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Abstract

Inverse modeling is a powerful tool for extracting information about the subsurface

from geophysical and hydrologic data. Geophysical inverse problems are inherently

multidisciplinary, requiring elements from the relevant physics, numerical simulation,

and optimization, as well as knowledge of the geologic setting, hydrologic processes,

and a comprehension of the interplay between all of these elements. Increasingly geo-

scientists are tackling complex problems that require integration of multiple types of

information in order to better characterize the subsurface. However, many of the sub-

fields of geophysics are developing simulation and inversion approaches, algorithms,

and supporting software in isolation. This isolation is a barrier to quantitative inte-

gration and leads to inefficiencies in advancing interdisciplinary research. Greater

efficiencies, and higher quality outcomes, could be achieved if (hydro)geophysicists

had a common framework to accelerate an integrated approach. The main goal of my

thesis is to organize the components of (hydro)geophysical simulations and inverse

problems, and synthesize these into a comprehensive, modular framework.

The development of a geophysical framework requires considering a number of

disciplines and geophysical problems (e.g. electromagnetics and potential fields) to en-

sure generality as well as extensibility. However, the goal is also to have the framework

work outside of geophysics and most notably in hydrogeology; vadose zone fluid flow
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is used as a model problem. Fluid flow in the vadose zone is governed by the Richards

equation; it is parameterized by hydraulic conductivity, which is a nonlinear function

of pressure head. The computational scalability of the Richards equation inversion is

a significant challenge for three dimensional inversions in hydrogeophysics. Existing

work explicitly calculates the sensitivity matrix using finite difference or automatic

differentiation, however, for large-scale problems these methods are constrained by

computation and memory. This dissertation provides an implicit sensitivity algorithm

that enables large-scale inversion problems for distributed parameters in the Richards

equation to become tractable on modest computational resources.
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Lay Summary

Geophysical methods gather data remotely to enable insights into subsurface struc-

ture and processes (e.g. locating economic resources or monitoring environmental

changes). The information derived from geophysical methods is of crucial impor-

tance in resource exploration, environmental remediation, and the study of deep-earth

processes. Interpretation of geophysical data requires a combination of numerical sim-

ulation and inversion. Inversion is a procedure for using data to estimate an image or

model of the earth (this is similar to medical imaging). Increasingly, geoscientists are

tackling complex problems that require integration of multiple types of information

in order to better characterize the subsurface. In hydrogeology and geophysics, this

quantitative integration requires advances in both disciplines, as well as a framework

for this collaboration. The objective of this dissertation is to identify and refine a com-

putational framework that enables and encourages sustained cross-disciplinary com-

munication, which is a necessary step in integrated geophysical simulation research.
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Preface

The research for this dissertation was completed while studying at the University of

British Columbia. This research has resulted in three peer reviewed publications, three

expanded conference abstracts, and several auxiliary works. The main focus of my the-

sis is on a framework for geophysical simulations and inversions that increases quan-

titative geoscience communication. In 2016, Dr. Oldenburg, Dr. Pidlisecky, Lindsey

Heagy and I organized an international conference around this work that was spon-

sored by the Banff International Research Station; excerpts from the introduction of

my thesis were used in the conference proposal.

Chapter 2 presents a framework for simulation and parameter estimation for geo-

physical applications. An earlier version of which was published in Cockett et al.

(2015c), and ideas from this chapter also have been presented at several international

conferences (cf. Cockett et al. (2014b, 2015b,a)).

Chapter 3 presents a computationally scalable algorithm for solving inverse prob-

lems for hydraulic parameters in vadose zone flow using the Richards equation. This

work has been submitted for peer review and the preprint is available on arXiv (Cockett

et al., 2017); preliminary versions of this research were presented at two conferences

(Cockett and Haber, 2013b,a).

Chapter 4 involves several numerical examples, which were inspired by work from
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my undergraduate thesis, of which two papers were published during the course of my

graduate research (Pidlisecky et al., 2013; Cockett and Pidlisecky, 2014). The forward

simulation framework for multi-parameter simulations and inversions in time-domain

physical problems used in this chapter was derived from collaborative work between

electromagnetics and vadose zone flow (Heagy et al., 2016). One of the numerical

examples in Chapter 4 has previously been published in (Cockett et al., 2017).

Two of the appendices contain supporting materials on finite volume and several

numerical examples and case studies. Appendix B on finite volume contains work and

figures that have been published in a computational tutorial on finite volume (Cockett

et al., 2016a). Additionally, much of this work is supported by course material and

instruction from Dr. Eldad Haber, Dr. Uri Ascher, and Dr. Chen Grief (Haber, 2015;

Ascher and Greif, 2011). Appendix C presents an adaptation of the forward simulation

framework published in Heagy et al. (2016) for the Richards equation. This appendix

also summarizes conclusions and insights from three extended conference abstracts on

electromagnetics and a publication on parametric geologic modelling (Heagy et al.,

2014; Kang et al., 2015a; Heagy et al., 2015c; Cockett et al., 2016b).

Throughout the course of my graduate research, I have started and contributed

to several open source software projects to support, test, and validate the geophys-

ical simulation and inversion framework that is the main focus of my thesis. My

main focus with this software was on inheritance, composition, terminology, and the

interfaces between simulation and inversion components – the elements that define

the framework. This is demonstrated by my personal contribution of 267,614 lines

of code over the last five years, which have been reduced over 4.5 fold to 59,111

lines of code while increasing possibilities and geophysical applications. For an up-

to-date, detailed analysis on code contribution and attribution over time, please see:
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https://www.openhub.net/p/simpeg-geophysics. This is perhaps the most salient dis-

tinguishment between the focus on framework development as opposed to a script

or executable that is aimed at a specific type of geophysical inversion. The major

software packages that have been created are: (a) SimPEG, a framework for simula-

tion and parameter estimation in geophysics (https://github.com/simpeg/simpeg); (b)

discretize, a finite volume package for simulation in the context of inverse prob-

lems (https://github.com/simpeg/discretize); and (c) pymatsolver, a common inter-

face to several matrix solvers and packages (https://github.com/rowanc1/pymatsolver).

These projects have seen significant investment from my colleagues in testing, ap-

plying, and expanding the capabilities of the framework to other geophysical appli-

cations. This open, collaborative work has involved colleagues across industry, gov-

ernment, and six universities. Currently SIMPEG includes methods for: vadose zone

flow (Cockett et al., 2017); direct current resistivity and induced polarization (Kang

and Oldenburg, 2016); time-domain and frequency-domain electromagnetics (Heagy

et al., 2016, 2017); magnetotellurics (Rosenkjaer et al., 2016); magnetics and grav-

ity (Miller et al., 2017); and several examples of other inverse problems (Kang et al.,

2017b). All software has been released under the permissive MIT license, to encourage

reuse, adaptation, and sustained contribution to these ideas.
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Chapter 1

Introduction

1.1 Research context

One of the goals of the applied geosciences is to gain an understanding of subsurface

structures and processes. These understandings are often used to make predictions

and decisions associated with commercial and environmental challenges, including

contaminant delineation, resource exploration, reservoir optimization, and watershed

characterization. The accuracy of these predictions can have far-reaching economic

and environmental implications. There are many disciplines and skills that are involved

in providing predictions, and increasingly these disciplines must collaborate and inte-

grate their domain-specific knowledge. In a managed aquifer recharge project, for

example, the goal is to infiltrate water into the subsurface for storage and subsequent

recovery. Throughout the lifetime of the project, monitoring and management of the

infiltration site is necessary (e.g. Racz et al. (2011); Daily et al. (1992); Park (1998)).

Such projects require input from geology, hydrology, and geophysics in order to map

the hydrostratigraphy, collect and interpret time-lapse geophysical measurements, and
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integrate all results to make predictions and decisions about fluid movement at the site.

The quantitative integration of the geosciences is far from trivial as each discipline has

differing descriptive terminology, as well as software tools that are domain specific

with limited interoperability.

In the following two subsections, I will independently introduce two disciplines

within applied geoscience: (a) geophysical inversions, and (b) hydrogeophysics in the

vadose zone. The current state of these disciplines gives context to the work that fol-

lows and motivates research into a computational framework that improves the quanti-

tative communication between methodologies and researchers. The subsequent section

expands on these ideas and identifies a significant computational challenge of hydro-

geophysics inversions in the vadose zone.

1.1.1 Geophysical inverse problems

Geophysical methods involve making measurements at or above the earth’s surface,

or in boreholes. The data acquired with these methods are then used to create mod-

els of the subsurface; this is similar to non-invasive medical imaging, but the spatial

and temporal scales are typically much larger. The models, which can be 1D, 2D, or

3D distributions of various physical properties, are used for monitoring and extracting

information about fluid flow and subsurface structures. The physical properties are

linked to the data through various partial differential equations. The task of generat-

ing a quantitative understanding of the data requires the ability to carry out forward

simulations of these equations and, in many situations, inverting the data to estimate

a static or time-lapse model of the subsurface. Forward simulations use the physics

of the underlying measurement approach to simulate the response of a given distribu-

tion of physical properties. Inversion is a mathematical, algorithmic, and occasionally
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heuristic process that constructs a model consistent with the field measurements and a

priori geologic, geophysical, and hydrologic information.

Many of these geophysical methods (e.g. electromagnetics, magnetotellurics, grav-

ity, direct current resistivity) have mature solutions for both simulation and inversion

in three dimensions and through time (Oldenburg, 2016). There is, of course, con-

tinued research into improving computational efficiency for large-scale geophysical

surveys (cf. Haber and Schwarzbach (2014); Yang et al. (2014); Haber and Heldmann

(2007)). In parallel to this effort, there is ongoing work to integrate these geophysical

methodologies to create more informed interpretations of the subsurface from multi-

ple data types and surveys (e.g. Devriese et al. (2017); Kang et al. (2017a); Fournier

et al. (2017)). This research trend is true in exploration geophysics as well as in cross-

disciplinary fields such as hydrogeophysics where hydrologic simulations and geo-

physical simulations can be combined to better inform predictions about groundwater

flow.

The development of new methodologies to address the evolving challenges in

quantitative geoscience integration will build upon and extend standard practices. These

extensions and integrations will require experimentation with, and recombination of,

existing techniques. This presupposes that researchers have access to consistent, well-

tested tools that can be extended, adapted, and combined. One of the main goals of

my thesis is to organize the components of geophysical simulations and inverse prob-

lems into a comprehensive, modular framework in order to support this combinatorial

experimentation and exploration.
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1.1.2 Hydrogeophysics in the vadose zone

The majority of groundwater recharge is derived through water that percolates through

the vadose zone, the region between the earth’s surface and the fully saturated zone.

As such, studying the processes that occur in the vadose zone is of critical importance

for understanding our groundwater resources. Much attention has been given to mon-

itoring, describing and predicting processes that occur in this region of the earth. Tra-

ditionally, monitoring has been conducted by taking point-measurements of saturation

or pressure, or laboratory measurements of soil hydraulic properties. More recently,

geophysical methods are being used in conjunction with hydrologic data to create more

informed models of and predictions about the subsurface (Linde and Doetsch, 2016).

The advantages of employing geophysics to hydrogeology problems are numerous;

geophysical methods allow data to be gathered remotely, and the data can then be used

to create an image of a distributed physical property of interest (e.g. electrical conduc-

tivity) in the subsurface. However, the geophysical problem is inherently non-unique

and when viewed independently, images produced by a geophysical inversion often

lack the detail necessary to make informed hydrogeologic predictions. Some level of

prediction can be offered by hydrogeologic simulations within the structural geologic

context; however, these simulations are difficult to verify due to lack of constraining

hydrologic data. Taken separately, each methodology involved in this monitoring chal-

lenge yields distinct interpretations and predictions that are often dissonant or actually

conflicting.

Fluid flow in the vadose zone is described by the Richards equation and is pa-

rameterized by hydraulic conductivity, which is a nonlinear function of pressure head.

Hydraulic conductivity defines how fluids move in the subsurface, and is an impor-

4



tant physical property to estimate for accurate predictions (Pollock and Cirpka, 2012;

Šimunek et al., 2012). It is not possible to directly image hydraulic conductivity with

geophysical data, however, geophysical electromagnetic methods are sensitive to bulk

electrical conductivity, which changes significantly depending on the saturating fluid

(e.g. gas or water) (Archie, 1942; Liang et al., 2012; Mendelson and Cohen, 1982).

Changes in saturation over time, as fluids move, can be related to changes in electrical

properties, and can be observed by electromagnetic geophysical methods. Knowing

where and how the fluids move can subsequently be related to hydraulic conductiv-

ity (or other hydraulic properties). This technique has been used to estimate hydraulic

properties directly from geophysical data. For example, in Binley et al. (2002), a cross-

well tomography experiment was conducted using radar and direct current resistivity

methods. The movement of a vadose zone tracer was tracked and a single parameter

was estimated using the Richards equation, through trial and error, for homogeneous

hydraulic conductivity. Both, the quality, and the spatial and temporal density of geo-

physical data available for monitoring vadose zone processes will continue to prolifer-

ate (e.g. Pidlisecky et al. (2013)). The increased data density and quality opens up the

possibility to estimate many more distributed hydraulic parameters.

Time-lapse estimation problem presents a significant conceptual and computa-

tional challenge (Pollock and Cirpka, 2012; Haber and Gazit, 2013; Towara et al.,

2015; Linde and Doetsch, 2016). It requires large-scale, time-lapse hydrogeologic

simulations that must be efficiently solved and then integrated with geophysical meth-

ods. This multiphysics integration of geophysical and hydrologic simulation can be

completed in a variety of ways. For example, this integration can be through direct

coupling of the simulations or through qualitative observations and uncoupled work-

flows. Hinnell et al. (2010) presents uncoupled integrations as: (a) using the geophys-
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ical data to estimate a physical property, such as electrical conductivity; (b) using an

empirical relation, such as Archie’s equation (eq. 4.1), to transform the geophysical

estimate into a hydrological parameter, such as water content; and (c) using hydrolog-

ical estimates to help inform or test a hydrogeologic simulation. A coupled inversion

formulates the entire process as a single forward model and uses stochastic or de-

terministic parameter estimation to directly update the hydrogeologic and empirical

parameters (Finsterle and Kowalsky, 2008; Ferré et al., 2009). Increasingly, there are

instances of these sorts of collaborations and studies in near surface hydrogeophysics

(cf. Linde and Doetsch (2016) and references within). The integration of geophys-

ical and hydrologic data increases the scale of simulations and inversions that must

be considered – hundreds of thousands to millions of hydrologic parameters must be

estimated. Currently, this is not computationally feasible for large 3D inversions of

vadose zone parameters using the Richards equation. For example, the relatively few

parameters that can be estimated by stochastic inversions may not be sufficient for

3D inversions (Linde and Doetsch, 2016). Alternatively, deterministic inversions can

be used, but will need to draw on improvements across the field of geophysical in-

verse problems. For example, regularization techniques developed in other areas of

exploration geophysics (e.g. Paasche and Tronicke (2007); Sun et al. (2012)), have po-

tential to be helpful in introducing known parameter distributions into a vadose zone

inversion. In Hinnell et al. (2010), the authors conclude that, “the coupled approach

[for hydrogeophysics] requires that the hydrologic and geophysical models be merged,

[which] forces the hydrologist and the geophysicist to formulate a consistent frame-

work.” This consistent framework was identified as “the primary limit to the routine

implementation of coupled inversion[s]. The formulation of common solution grids,

time steps, and simulation accuracies requires an uncommon level of collaboration
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during scientific analysis.”

1.1.3 Research motivation

The quantitative integration of hydrology, geophysics, and geology remains an open

problem (Liu and Gupta, 2007; Ferré et al., 2009; Pollock and Cirpka, 2012; Knight

et al., 2013; Linde and Doetsch, 2016). This task is being worked on from many

different perspectives in various research communities, and much progress has been

made in case studies, new algorithms, and novel integrations. The complexity of this

integration “intertwines various disciplines/subjects including geophysics, hydrology,

petrophysics, geostatistics, [and] inverse theory” (Knight et al., 2013). Although each

subdiscipline (e.g. flow modelling, electromagnetic simulation) invokes many of the

same concepts and numerical pieces for solving simulation and inversion problems, the

approaches developed and applied are not easily shared between subdisciplines. This

is due to differing terminology, organization of methodologies, differing data densi-

ties and sensitivities, model conceptualizations, as well as software implementations.

For example, in geophysics a model is often taken to be a volumetric distribution of

physical properties (e.g. Oldenburg and Li (2005)); in geology a model is often more

qualitative, represented by a sketch, description, 3D surfaces, or a cross section that

opaquely embeds knowledge about geologic processes (e.g. Harder et al. (2009); Por-

wal and Kreuzer (2010)); in hydrology a model often refers to the representation of a

physical simulation or empirical equation, frequently containing simplifying assump-

tions of homogeneity or dimensionality (cf. Devi et al. (2015)). As another example,

in hydrogeology data is often collected as high precision point measurements with low

spatial and/or temporal coverage; in electromagnetic geophysics, however, physical

property recoveries are often less precise and are averaged over a larger spatial scale.
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The inclusion of relevant information from one subdiscipline into another is diffi-

cult due to these differences in terminology, knowledge representation (e.g. quantita-

tive or qualitative), knowledge mapping (e.g. through empirical or structural relations),

model conceptualization (e.g. volumetric or surfaces or parametric), data sensitivi-

ties (e.g. point or bulk measurements), and simplifying or implicit assumptions (e.g.

one dimensional or homogeneous). These disconnects are exceptionally apparent in

software implementations, even though software is precisely where quantitative inte-

gration must occur! Software is often developed ad hoc for specific outcomes, and

the algorithmic components, which are conceptually generic and could be shared with

others, are deeply embedded and not easily transferred to other applications. Within

a given subdiscipline this can create challenges, as the system under consideration

can potentially embed hard-coded, tacit assumptions. Furthermore, this lack of trans-

portability and interoperability severely hinders the advancement of novel geophysical

applications since geoscientists in different subgroups often find themselves having to

develop a complete software solution from scratch prior to investigating their scientific

questions of interest. Overcoming these bottlenecks, and establishing a simulation and

inversion framework that works across many subdisciplines of (hydro)geophysics, is

the overarching goal of this thesis.

Based on the current state of the geoscience inversion and hydrogeophysics com-

munity and the observations outlined above, I have arranged this thesis to address two

research topics:

1. the development of an extensible framework for geophysical inversions, and

2. formulation of the three dimensional Richards equation inversion for computa-

tional scalability.
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The overarching goal is to promote both quantitative integration and collaboration be-

tween geoscience disciplines and communities. Interdisciplinary integration requires

dissemination, reproducibility, accessibility, and collaboration; as such these are cru-

cial to my work and demonstrated throughout the following thesis.

1.2 A framework for geophysical inversions

Geophysical inversions are the mathematical process of creating subsurface models to

fit measured data and geophysical simulations. The language, workflows, and resulting

software implementations of geoscience inversions vary across disciplines. These in-

consistencies are among the large barriers to sustained cross-disciplinary integrations.

One research approach to addressing these interdisciplinary barriers is the develop-

ment of a framework that organizes, synthesizes and abstracts diverse methodologies.

A framework should (a) serve as a means of organizing an approach to simulation and

inverse problems, (b) facilitate quantitative communication between researchers and

geophysics methodologies, and (c) act as a blueprint for both ideation and software

implementations. The disciplines and methodologies that have been used to inform

the research of this framework include: vadose zone flow using the Richards equation,

direct current resistivity, time and frequency domain electromagnetics, magnetotel-

lurics, potential fields including gravity and magnetics, and using geologic parame-

terizations to inform model conceptualization. Oldenburg (2016) noted that many of

the geophysical inversion techniques can now be completed in three dimensions us-

ing computationally efficient inversion algorithms. This is significant as geological

structures and processes such as electromagnetics and fluid flow often require treat-

ment in three dimensions. In both geophysics and hydrogeology the data is a field or a

flux, sampled at various locations, times, or frequencies. Additionally, point samples
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of physical properties or (hydro)stratigraphy can be inferred or tested from borehole

cores and geologically interpolated between wells and surface observations. These can

be included into the inverse problem formulation either implicitly through weightings

and reference models (cf. Williams (2008)) or more explicitly by forcings of geologic

priors (cf. Linde et al. (2015)). The geologic observations can also be modelled, for

example, using radial basis functions (RBFs), to implicitly reproduce the geologic con-

tacts and drillhole data; this results in geologically interpreted interpolations dividing

the subsurface into lithological units (Hillier et al., 2014).

Each geophysical technique is sensitive to different physical properties and/or dif-

ferent spatial scales. The differing sensitivities of these techniques motivates combi-

nation of methodologies to better understand and image the subsurface and time-lapse

processes. This is an active field of study, for example, (a) investigating cooperative

electromagnetics inversions in realistic settings by externally combining existing tools

through custom workflows (McMillan and Oldenburg, 2014), (b) joint inversion and

model fusion algorithms for direct current resistivity and borehole tomography (Haber

and Gazit, 2013), (c) integrating multiple types of airborne geophysical data into a

consistent geologic model for mineral exploration (Kang et al., 2017a; Fournier et al.,

2017; Devriese et al., 2017), and (d) combining one dimensional vadose zone flow and

direct current resistivity to invert for hydrological parameters (Hinnell et al., 2010).

Many of these studies rely on externally integrating existing software tools through

purpose-built scripts and workflows; limiting the transferability to other disciplines.

However, recent work has seen an increased focus by the geophysical community on

a framework approach that targets multiple geophysical and hydrogeologic method-

ologies (e.g. JInv (Ruthotto et al., 2016) and PyGIMLi (Rücker et al., 2017)). In

many electromagnetic geophysical applications, for example, a common model for
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electrical conductivity can be produced through cycling a common model through the

relevant problems until a sufficient misfit is achieved. In hydrogeophysics, however,

the model from a geophysical simulation is the data for a hydrogeologic simulation.

As such, for a deterministic large-scale inversion the sensitivity from one problem is

empirically coupled to another problem and must be efficiently calculated. In hydro-

geophysics, coupled hydrologic and geophysical interpretations are moving into three

dimensions, and standard probabilistic and finite difference techniques are becoming

“computationally infeasible” (Linde and Doetsch, 2016). The coupling of these meth-

ods into a computationally efficient inversion requires attention to the scalability of

all individual approaches as well as exposing the geophysical inversions effectively

for hydrogeologic parameter estimation. In order to support the custom parameteri-

zations, couplings, and integrations that are necessary for a new application, a gen-

eral framework must provide combinatorial building blocks that are independently

accessible and extensible, while maintaining computational efficiencies. The PEST

framework for model independent parameter estimation and uncertainty analysis is a

concrete example of where parts of this have been done with success (Doherty, 2004).

The software is widely cited in academia (> 2K citations) especially in hydrology and

hydrogeophysics, and is heavily used in industry. The advantage of being model in-

dependent has given this technique wide application due to the flexibility to adapt to

new scientific questions. However, this also comes at quite a cost because the structure

of the simulation and modelling cannot be used to the advantage of the algorithm. As

with vadose zone flow or electromagnetics, when moving to three dimensions there

may be hundreds of thousands to millions of parameters to estimate. Not taking the

structure of the problem into account severely limits types and size of problems that

can be considered. In the context of geophysical simulations and inversions there are
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two significant challenges/opportunities for such a framework:

1. to organize the components of geophysical simulations and inversions to and

expose explicit interfaces to components to interdisciplinary manipulation in a

combinatorial manner; and

2. maintaining computational scalability, especially with respect to efficient calcu-

lation of sensitivities.

Adapting interdisciplinary methodologies to formalize geophysical simulations and

inversions inherently requires that a diverse suite of methods and applications be con-

sidered across geophysics, hydrogeology, and geology. This process will take the form

of deriving, from the existing body of literature, a consistent conceptual and compu-

tational framework, which supports reproducible inversion workflows. By formalize,

I do not mean mathematically, rather taking practices of ontology and computational

framework development in biology and other more mature interdisciplinary fields and

applying them to geophysical inversions. The ontology literature provides context, al-

beit abstract, for the approach that I have used to formalize the research around this

interdisciplinary problem and is briefly detailed in Appendix A.

1.2.1 Take home points

Sustained, reproducible integration of geophysical simulations and inversions requires

that methodologies be accessible, consistent, numerically documented, interoperable,

and extensible. This can be enabled by a comprehensive framework that is validated

and rigorously tested against reality and leading edge research. To do this, research is

required to:
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� identify the composable components of geophysical inversions and simulations,

as well as the interfaces between the components;

� abstract commonalities between methodologies to a consistent, supporting sub-

set; and

� capture geoscience inversion heuristics in a reproducible manner.

The output of this research will be a computational framework that is numerically

tested and demonstrates the capability to support existing and future research direc-

tions. Ideally this framework will catalyze and accelerate interdisciplinary collabora-

tions.

1.3 Application to vadose zone parameter estimation

The development of a geophysical framework requires considering a number of dis-

ciplines and geophysical problems to ensure generality as well as extensibility. I am

working with collaborators in many of these geophysical methods (electromagnetics,

direct current resistivity, magnetotellurics, magnetics, gravity) and am ensuring that

the framework that I am researching supports these applications. However, the goal is

also to have the framework work outside of geophysics and most notably in hydroge-

ology, as such, I have chosen vadose zone fluid flow as a model problem.

Fluid flow in the vadose zone is described by the Richards equation (eq 3.1) and

parameterized by hydraulic conductivity, which is a nonlinear function of pressure

head (Richards, 1931; Celia et al., 1990). Investigations in the vadose zone typically

require identification of distributed hydraulic properties. This is increasingly being

done through an inversion approach, which is also known as data assimilation, model

calibration, or history matching (Liu and Gupta, 2007). These methods use changes
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in water content or pressure head to infer hydraulic parameters (Binley et al., 2002;

Deiana et al., 2007; Hinnell et al., 2010). Hydrogeophysics allows many more proxy

measurements, such as direct current resistivity data, to be taken to help characterize

these sites spatially, as well as through time. As such, the number of distributed hy-

draulic parameters to be estimated in a Richards equation inversion will continue to

grow. Conceptually this integration is framed as taking the output of a (time-lapse)

direct current resistivity inversion (cf. Pidlisecky et al. (2013)), and using this estimate

of electrical conductivity as a proxy for water content data in hydraulic parameter

estimation. The proxy data can be directly incorporated through an empirical relation

(e.g. Archie (1942)) or time-lapse estimations can be structurally incorporated through

some sort of regularization technique (Haber and Gazit, 2013; Haber and Oldenburg,

1997; Hinnell et al., 2010). Previous studies have either estimated homogeneous soil

profiles estimating less than five parameters (e.g. Binley et al. (2002); Deiana et al.

(2007)) or heterogeneous soil profiles, estimating less than thousands of parameters

(cf. Irving and Singha (2010); Jardani et al. (2013); Orgogozo et al. (2014)). Parame-

ter estimation is currently completed by trial and error or using stochastic techniques,

neither of which scale to the scenario that requires estimation of hundreds of thousands

to millions of parameters (Linde and Doetsch, 2016). This limit in scalability, espe-

cially in the context of hydrogeophysics has been explicitly noted in the literature (cf.

Binley et al. (2002); Deiana et al. (2007); Towara et al. (2015)). To our knowledge,

a large scale inversion in three dimensions for distributed hydraulic parameters using

the Richards equation has not yet been completed in the literature due to these issues

with computational scalability.

There has been much research into the scalability of the inverse problem in geo-

physical applications (e.g. electromagnetics) that allow the calculation of an optimiza-
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tion step in the inversion without explicitly calculating or storing the sensitivity matrix

(cf. Haber et al. (2000)). This is extremely important in large problems as the com-

puter memory available to store this large, dense matrix can often be a limitation. For

example, although there have been significant advances for massively parallel forward

simulations of the Richards equation (cf. Orgogozo et al. (2014)), the computational

“memory may simply not be large enough” to run the inverse problem using standard

automatic differentiation (Towara et al., 2015). Previous work uses either automatic

differentiation or finite difference in order to explicitly compute the sensitivity matrix

(e.g. PEST) (Finsterle and Zhang, 2011; Bitterlich and Knabner, 2002; Towara et al.,

2015). Finite difference is computationally slower and can generate inaccuracies in

the sensitivity computation and tarry convergence of the optimization algorithm. With

regard to implicit sensitivity calculations, there is an opportunity to apply some of

the learnings from the geophysical inversion literature to this hydrogeologic problem.

Note that the implicit sensitivity calculation is necessary in any gradient based tech-

nique as well as modern stochastic methods (Bui-Thanh and Ghattas, 2015).

The application of the implicit sensitivity calculation to the Richards equation,

however, is not straightforward. Hydraulic conductivity is the function we are invert-

ing for - it is empirically determined and depends on pressure head; pressure head

is the field that is calculated using the Richards equation. This nonlinear coupling

requires iterative optimization methods in the forward simulation between each time

step (e.g. Picard or Newton). This makes the implicit calculation of the effect of the

sensitivity on a vector rather involved and intricate. Furthermore, the nonlinear re-

lationship of hydraulic conductivity is empirically determined and depending on the

relation used could involve the estimation of up to ten spatially-distributed parameters

from a finite dataset. The implicit use of the sensitivity matrix should have the ability
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to calculate the sensitivity to any of these model parameters; however, any inversion

algorithm must be tested as to the limits of estimating all distributed parameters at

once. One goal of the work in this thesis is to tackle the sensitivity calculation implic-

itly. This would further allow for exploration into different inversion methodologies

and parameterizations of the empirical relationships. By not storing the sensitivity, and

instead computing its effect on a vector, the size of the problem that we can invert will

become much larger. This will allow large 3D hydraulic parameter inversions using

the Richards equation to be run on modest computational resources. However, directly

jumping into a 3D inversion for heterogeneous hydraulic properties, with many param-

eters per cell in the isotropic case, is highly non-unique. I will explore some inversion

schemes, model conceptualizations, and ways to explore interfacing to a priori infor-

mation. Unsaturated hydraulic conductivity as well as the water retention curve are

both empirically described functions. The parameterization and estimation of these

functions in the context of collecting proxy saturation data will be explored in a num-

ber of numerical experiments.

1.3.1 Take home points

With advances in the spatial and temporal density of geophysical data collection, time-

lapse water content estimates can be made with increasing accuracy. These proxy time-

lapse measurements can be used to estimate hydraulic properties from non-invasive

geophysical methods. This is increasingly being completed in field studies, however,

conceptual and computational simplifications are consistently made. Part of the bot-

tleneck is the scalability of current inverse methods applied to the Richards equation.

Research is required to:

� reframe the Richards equation inversion for computational scalability when mov-

16



ing to large 3D distributed parameter estimation,

� ensure that any parameter in the empirically determined hydraulic conductivity

function and water retention curve can be estimated, and

� investigate and explore the effectiveness of distributed joint inversions for hy-

draulic parameters from a water content dataset.

This research will inform the conceptual framework and contribute an implicit sen-

sitivity calculation for the Richards equation inverse problem that can be coupled to

other geophysical methods.

1.4 Thesis outline

The content of this thesis is divided into three chapters and three appendices; these are

shown visually in Figure 1.1. Each chapter and appendix provides a stand alone intro-

duction and conclusion to the specific topic under consideration. Chapter 2 presents a

comprehensive framework for geophysical simulations and inversions. This includes

an overview of current research and outlines a modular, object-oriented approach for

structuring deterministic, large-scale inversion methodology in geophysics that has

application to hydrogeology and can incorporate and interface to geologic informa-

tion. A direct current resistivity forward simulation and inversion are used through-

out this chapter as an example. A brief comment on the approach used to research

this computational framework is included in Appendix A. An overview of finite vol-

ume discretization techniques, which are heavily used throughout this thesis, has been

included as Appendix B. In this appendix, I examine and comment on the organiza-

tion, structure, and formulation of three different classes of mesh: (a) tensor product

orthogonal mesh, including formulation in cylindrical coordinates; (b) quadtree and
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octree meshes; and (c) logically rectangular, non-orthogonal meshes. These meshes

in 1D, 2D, 3D, and 4D are used throughout the thesis as well as extensions to my

work. The software used to inform my work and refine my interdisciplinary approach

to simulation and parameter estimation in geophysics is open source and available un-

der the permissive MIT license (https://github.com/simpeg/simpeg). This repository

includes forward and inverse software by me and my colleagues of the framework

for vadose zone flow, time and frequency domain electromagnetics, direct current

resistivity, induced polarization, magnetotellurics, magnetics, gravity, and a number

of example linear inverse problems; these are described in the online documentation

(http://docs.simpeg.xyz).

Chapter 3 focuses on the Richards equation, which is the partial differential equa-

tion that describes vadose zone flow. Using the previously developed framework and

finite volume tools tailored specifically for inverse problems (Appendix B), I have

reframed the Richards equation to be scalable with respect to large-scale inverse prob-

lems. The majority of this work is focused on enabling access to the sensitivity im-

plicitly, through multiplication with a vector. The validity of this technique as well as

comments on numerical performance are provided. The scalability of the algorithm

developed is shown with comparison to other techniques. This work has built upon as

well as informed the research into the organization of the framework. The Richards

equation is more complex than many other geophysical methods analyzed because of

the nonlinear, time dependent forward problem and multiple empirical relationships

that may or may not require estimation.

Chapter 4 explores the estimation of hydraulic parameters from water content data.

This is motivated by the hydrogeophysical problem where there is an availability of

proxy water content data. This chapter explores a set of empirical relations that in-
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Figure 1.1: Outline of the thesis chapters: (2) the simulation and inversion frame-
work; (3) the sensitivity calculation in Richards equation; (4) applications
and exploration into vadose zone inversions; (A1) finite volume techniques
on a variety of meshes; and (A2) interfaces to geologic knowledge through
parameterizations and a forward simulation framework and extensions to
the work presented.

form both the hydraulic conductivity function and the water retention curve. A joint

inversion is formulated to estimate for five spatially distributed hydraulic parameters.

The number of spatially distributed unknowns are experimented with, and the response

of the inversion algorithm is tested under various levels of a priori knowledge. The

efficacy of these approaches is commented upon, which may help inform laboratory

or field based experiments of this kind. Finally, a three dimensional inversion is com-

pleted using the Richards equation. Due to computational scalability issues detailed

in Chapter 3, an inversion for distributed hydraulic parameters at this scale is com-

putationally infeasible with standard techniques (Linde and Doetsch, 2016). These

limitations are overcome by both the framework introduced in Chapter 2 and the im-

plicit sensitivity calculation that allows large-scale parameter estimation problems to

be tackled (Chapter 3). Other examples, extensions, and applications of the framework

including other geophysical methodologies, case studies, and geoscience integrations

are included in Appendix C; much of this work is collaborative in nature and focuses
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on the parameterization of the forward problem. As the focus of this thesis is on the

geophysical inversion framework, I have distilled my observations from these case

studies and provided these learnings in a general form.

Finally, Chapter 5 provides a brief discussion on the thesis contributions and sum-

marizes some opportunities for future research and collaborations. These research

areas may seem disparate, but collectively they are united by a common theme of

addressing the complexities of bringing together the disciplines of geophysics, hydrol-

ogy, geology, and inverse theory in a computationally tractable manner that is accessi-

ble and extensible by other researchers.
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Chapter 2

Simulation and inversion framework

2.1 Introduction and motivation

Geophysical surveys can be used to obtain information about the subsurface, as the

measured responses depend on the physical properties and contrasts in the earth. In-

versions provide a mathematical framework for constructing physical property models

consistent with the data collected by these surveys. The data collected are finite in

number, while the physical property distribution of the earth is continuous. Thus, in-

verting for a physical property model from geophysical data is an ill-posed problem

because no unique solution explains the data. Furthermore, the data may be contam-

inated with noise. Therefore, the goal of a deterministic inversion is not only to find

a model consistent with the data, but also to find the ‘best’ model that is consistent

with the data1. The definition of ‘best’ requires the incorporation of assumptions and

a priori information, often in the form of an understanding of the particular geologic

1Alternatively, the inverse problem can be formulated in a probabilistic framework, for example:
(Tarantola, 2005; Tarantola and Valette, 1982). In this thesis, we will focus our attention on the deter-
ministic approach.
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setting or structures (Constable et al., 1987; Oldenburg and Li, 2005; Lelièvre et al.,

2009). Solving the inverse problem involves many moving pieces that must work to-

gether, including physical simulations, optimization, linear algebra, and incorporation

of geology. Deterministic geophysical inversions have been extensively studied and

many components and methodologies have become standard practice. With increases

in computational power and instrumentation quality, there is a greater drive to extract

more information from geophysical data. Additionally, geophysical surveys are being

applied in progressively more challenging environments. As a result, the geosciences

are moving towards the integration of geological, geophysical, and hydrological in-

formation to better characterize the subsurface (e.g. Haber and Oldenburg (1997);

Doetsch et al. (2010); Gao et al. (2012)). This integration is a scientifically and prac-

tically challenging task (Li and Oldenburg, 2000a; Lelièvre et al., 2009). These chal-

lenges, compounded with inconsistencies between different data sets, often make the

integration and implementation complicated and/or non-reproducible. The develop-

ment of new methodologies to address these challenges will build upon, as well as

augment, standard practices; this presupposes that researchers have access to consis-

tent, well-tested tools that can be extended, adapted, and combined.

There are many proprietary codes available that focus on efficient algorithms and

are optimized for a specific geophysical application (e.g. Kelbert et al. (2014); Li and

Key (2007); Li and Oldenburg (1996, 1998)). These packages are effective for their

intended application; for example, in a domain-specific, large-scale geophysical inver-

sion or a tailored industry workflow. However, many of these packages are ‘black-box’

algorithms; that is, they cannot easily be interrogated or extended. As researchers,

we require the ability to interrogate and extend ideas; this must be afforded by the

tools that we use. Accessibility and extensibility are the primary motivators for this
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work. Other disciplines have approached the development of these tools through open

source initiatives, using interpreted languages such as Python (for example, Astropy

in astronomy (Astropy Collaboration et al., 2013) and SciPy in numerical computing

(Jones et al., 2001)). Interpreted languages facilitate interactive development using

scripting, visualization, testing, and interoperability with code in compiled languages

and existing libraries. Furthermore, many open source initiatives have led to com-

munities with hundreds of researchers contributing and collaborating by using social

coding platforms, such as GitHub (https://github.com). Initiatives also exist in the geo-

physical forward and inverse modeling community, which target specific geophysical

applications (cf. Hansen et al. (2013); Hewett et al. (2013); Uieda et al. (2014); Kel-

bert et al. (2014); Harbaugh (2005)). Recent work has seen an increased focus by

the geophysical community on a framework approach that targets multiple geophys-

ical/hydrogeologic methods (e.g. JInv (Ruthotto et al., 2016) and PyGIMLi (Rücker

et al., 2017)). We are interested in creating a community around geophysical sim-

ulations and gradient-based inversions. To create a foundation on which to build a

community, we require a comprehensive framework that is applicable across domains

and upon which researchers can readily develop their own tools and methodologies.

To support these goals, this framework must be modular and its implementation must

be easily extensible by researchers.

2.1.1 Attribution and dissemination

The goal of this chapter is to present a comprehensive framework for simulation and

gradient-based parameter estimation in geophysics. Core ideas from a variety of geo-

physical inverse problems have been distilled to create this framework. We also pro-

vide an open source library, written in Python, called SIMPEG (Simulation and Pa-
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rameter Estimation in Geophysics, http://github.com/simpeg/simpeg). Our implemen-

tation has core dependencies on SciPy, NumPy, and Matplotlib, which are standard

scientific computing packages in Python (Jones et al., 2001; Van Rossum and Drake

Jr, 1995; Oliphant, 2007; Hunter, 2007). SIMPEG includes staggered grid, mimetic

finite volume discretizations on structured and semi-structured meshes. It interfaces to

standard numerical solver packages, convex optimization algorithms, model parame-

terizations, and visualization routines. We use Python’s object-oriented paradigm to

create modular code that is extensible through inheritance and subtype polymorphism.

SIMPEG follows a fully open source development paradigm (Feller and Fitzgerald,

2000) and uses the permissive MIT license. Throughout its development, we have

focused on modularity, usability, documentation, and extensive unit-testing (Wilson

et al., 2014). Please see the website (http://simpeg.xyz) for up-to-date code, examples,

and documentation of this package. In addition, there are many published use cases

across a variety of geophysical applications (Kang et al., 2014, 2015b,a; Kang and

Oldenburg, 2015; Heagy et al., 2014, 2015d). We hope that the organization, modu-

larity, minimal dependencies, documentation, and testing in SIMPEG will encourage

reproducible research, cooperation, and communication to help tackle some of the in-

herently multidisciplinary geophysical problems.

To guide the discussion, we start this chapter by outlining gradient-based inver-

sion methodology in Section 2.2. The inversion methodology directly motivates the

construction of the SIMPEG framework, terminology, and software implementation,

which we discuss in Section 2.3. We weave an example of Direct Current (DC) resis-

tivity throughout the discussion of the SIMPEG framework to provide context for the

choices made and highlight many of the features of SIMPEG.
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2.2 Inversion methodology

Geophysical inverse problems are motivated by the desire to extract information about

the earth from measured data. A typical geophysical datum can be written as:

Fi[m]+ ei = di; (2.1)

where F is a forward simulation operator that incorporates details of the relevant phys-

ical equations, sources, and survey design, m is a generic symbol for the inversion

model, ei is the noise that is often assumed to have known statistics, and di is the

observed datum. In a typical geophysical survey, we are provided with the data,

di; i = 1:::N, and some estimate of their uncertainties. The goal is to recover the model,

m, which is often a physical property. The data provide only a finite number of inac-

curate constraints upon the sought model. Finding a model from the data alone is

an ill-posed problem since no unique model exists that explains the data. Additional

information must be included using prior information and assumptions (for example,

downhole property logs, structural orientation information, or known interfaces (Fulla-

gar et al., 2008; Li and Oldenburg, 2000a; Lelièvre et al., 2009)). This prior knowledge

is crucial if we are to obtain an appropriate representation of the earth and will be dis-

cussed in more detail in Section 2.2.1.

Defining and solving a well-posed inverse problem is a complex task that requires

many interacting components. It helps to view this task as a workflow in which vari-

ous elements are explicitly identified and integrated. Figure 2.1 outlines the inversion

methodology that consists of inputs, implementation, and evaluation. The inputs are

composed of: the geophysical data; the equations, which are a mathematical descrip-

tion of the governing physics; and, prior knowledge or assumptions about the setting.
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The implementation consists of two broad categories: the forward simulation and the

inversion. The forward simulation is the means by which we solve the governing equa-

tions, given a model, and the inversion components evaluate and update this model.

We are considering a gradient-based approach, which updates the model through an

optimization routine. The output of this implementation is a model, which, prior to

interpretation, must be evaluated. This requires considering, and often re-assessing,

the choices and assumptions made in both the input and the implementation stages.

In this chapter, our primary concern is the implementation component; that is, how

the forward simulation and inversion are carried out numerically. As a prelude to dis-

cussing how the SIMPEG software is implemented, we step through the elements in

Figure 2.1, considering a Tikhonov-style inversion.

2.2.1 Inputs

Three sources of input are required prior to performing an inversion: (1) the geophysi-

cal data and uncertainty estimates; (2) the governing equations that connect the sought

model with the observations; and (3) prior knowledge about the model and the context

of the problem.

Data and uncertainty estimates

At the heart of the inversion are the geophysical data that consist of measurements

over the earth. These data depend on the type of survey, the physical property distri-

bution, and the type and location of the measurements. The details about the survey

must also be known, such as the location, orientation, and waveform of a source and

which component of a particular wavefield is measured at a receiver. The data are

contaminated with additive noise, which can sometimes be estimated by taking mul-
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Figure 2.1: Inversion methodology. Including inputs, implementation, evalua-
tion and interpretation.

tiple realizations of the data. However, standard deviations of those realizations only

provide a lower bound for the noise. For the inverse problem, the uncertainty in the

data must include not only this additive noise, but also any discrepancy between the

true earth experiment and our mathematical representation of the data. Including these

aspects requires accounting for mis-location of receivers and sources, poor control of

the transmitter waveform, electronic gains or filtering applied to signals entering the

receivers, incorrect dimensionality in our mathematical model (e.g. working in 2D

instead of 3D), neglect of physics in our mathematical equations by introducing as-

sumptions (e.g. using a straight ray tomography vs. a full waveform simulation in
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seismic), and discretization errors of our mathematical equations.

Governing equations

The governing equations provide the connection between the physical properties of

the subsurface and the data we observe. Most frequently, these are sets of partial

differential equations with specific boundary conditions. The governing equations,

with specified source terms, can be solved through numerical discretization using finite

volume, finite element, or integral equation techniques. Alternatively, they may also

be solved through evaluations of analytic functions. Whichever approach is taken, it is

crucial that there exists some way to simulate the data response given a model.

Prior knowledge

If one model acceptably fits the data, then infinitely many such models exist. Ad-

ditional information is therefore required to reduce non-uniqueness. This additional

information can be geologic information, petrophysical knowledge about the various

rock types, borehole logs, additional geophysical data sets, or inversion results. This

prior information can be used to construct reference models for the inversion and also

characterize features of the model, such as whether it is best described by a smooth

function or if it is discontinuous across interfaces. Physical property measurements

can be used to assign upper and lower bounds for a physical property model at points

in a volume or in various regions within our 3D volume. The various types of infor-

mation relevant to the geologic and geophysical questions that we must address must

be combined and translated into useful information for the inversion (Lelièvre et al.,

2009; Li et al., 2010).
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2.2.2 Implementation

In this section, we outline the components necessary to formulate a well-posed inverse

problem and solve it numerically. Two major abilities are critical to running the inver-

sion: (1) the ability to simulate data, and (2) the ability to assess and update the model

(Figure 2.1).

Forward simulation

The ability to carry out an inversion presupposes the ability to run a forward simulation

and create predicted data, given a physical property model. In forward simulation, we

wish to compute F [m] = dpred. The operator, F , simulates the specific measurements

taken in a geophysical survey, using the governing equations. The survey refers to all

details regarding the field experiment that we need to simulate the data. The forward

simulation of DC resistivity data requires knowledge of the topography, the resistivity

of the earth, and the survey details, including locations of the current and potential

electrodes, the source waveform, the units of the observations, and the polarity of

data (since interchanging negative and positive electrodes may sometimes occur in the

field). To complete the simulation, we need to solve our governing equations using

the physical property model, m, that is provided. In the DC resistivity experiment,

our partial differential equation, with supplied boundary conditions, is solved with an

appropriate numerical method; for example, finite volumes, finite elements, integral

equations, or semi-analytic methods for 1D problems. In any case, we must discretize

the earth onto an appropriate numerical forward simulation mesh, (meshF ). The size

of the cells will depend upon the structure of the physical property model, topography,

and the distance between sources and receivers. Cells in meshF must be small enough,

and the domain large enough, to achieve sufficient numerical accuracy. Proper mesh
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design is crucial so that numerical modeling errors are below a prescribed threshold

value (cf. Haber (2015)).

In general, we can write our governing equations in the form of:

C(m;u) = 0; (2.2)

where m is the modeled physical property and u are the fields and/or fluxes. C is often

given by a partial differential equation or a set of partial differential equations. Infor-

mation about the sources and appropriate boundary conditions are included in C. This

system is solved for u and the predicted data are extracted from u via a projection (or

functional), dpred = P[u]. The ability to simulate the geophysical problem and generate

predicted data is a crucial building block. Accuracy and efficiency are essential, since

many forward problems must be evaluated when carrying out any inversion.

Inversion elements

In the inverse problem, we must first specify how we parameterize the earth model.

Finding a distributed physical property can be done by discretizing the 3D earth into

voxels, each of which has a constant, but unknown, value. It is convenient to refer

to the domain on which this model is discretized as the inversion mesh, meshI . The

choice of discretization involves an assessment of the expected dimensionality of the

earth model. If the physical property varies only with depth, then the cells in meshI

can be layers and a 1D inverse problem can be formulated. A more complex earth

may require 2D or 3D discretizations. The choice of discretization depends on both

the spatial distribution and resolution of the data and the expected complexity of the

geologic setting. We note that the inversion mesh has different design criteria and con-
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straints than the forward simulation mesh. For convenience, many inverse problems

have historically been solved with meshI = meshF so that only one discretization is

needed for the inversion. There is a growing body of work that investigates combina-

tions of inversion discretizations and forward modeling meshes that are geared towards

problem-specific formulations as well as efficiency in large-scale problems (Haber and

Schwarzbach, 2014; Yang et al., 2014; Haber and Heldmann, 2007). In any formula-

tion, there exists a mapping between meshI and meshF such that the parameterization

chosen can be used to simulate data in a forward simulation.

To formulate a mathematical statement of the inverse problem, there are two es-

sential elements:

1. data misfit: a metric that measures the misfit between the observed and predicted

data; and

2. regularization: a metric that is constructed to evaluate the model’s agreement

with assumptions and prior knowledge.

The data misfit requires an assessment of the error in each datum. These errors

result from anything that yields a discrepancy between the mathematical modeling and

the true value. It includes additive noise, errors in the description of survey parameters

(e.g. receiver locations, transmitter waveforms, etc.), incorrect choice of governing

equations, and numerical errors arising from the simulation technique. Clearly, quan-

tifying the noise for each datum poses a challenge.

The data misfit is a measure of how well the data predicted by a given model

reproduce the observed data. To assess goodness of fit, we select a norm that evaluates

the ‘size’ of the misfit. This metric must include an uncertainty estimate for each
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datum. Often, we assume that the data errors are Gaussian and uncorrelated and then

estimate the standard deviation for each datum. The most common norm, and one that

is compatible with Gaussian statistics, has the form:

fd(m) =
1
2
kWd(F [m]�dobs)k2

2: (2.3)

Here, F [m] is a forward modeling that produces predicted data, dpred, as in equation:

2.1. Wd is a diagonal matrix whose elements are equal to Wdii = 1=ei, where ei is an

estimated standard deviation of the ith datum. It is important to think carefully when

assigning these estimates. A good option is to assign a ei = f loor+%jdij. Percentages

are generally required when there is a large dynamic range of the data. A percentage

alone can cause great difficulty for the inversion if a particular datum acquires a value

close to zero; therefore, we include a floor.

In addition to a metric that evaluates the size of the misfit, we also require a tol-

erance, f�d . We consider that models satisfying fd(m) � f�d adequately fit the data

(Parker, 1994). If the data errors are Gaussian and we have assigned the correct stan-

dard deviations, then the expected value of f�d � N, where N is the number of data.

Finding a model that has a misfit substantially lower than this will result in a solution

that has excessive and erroneous structure; that is, we are fitting the noise. Finding a

model that has a misfit substantially larger than this will yield a model that is missing

structure that could have been extracted from the data (see Oldenburg and Li (2005)

for a tutorial).

The choice of misfit in equation 2.3 is not the only possibility for a misfit measure.

If data errors are correlated, then Wd is the square root of the data covariance matrix

and it will have off-diagonal terms. Often useful in practice is recognizing if the noise
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statistics are non-Gaussian. Incorporating robust statistical measures, like lp norms

with p� 1, are useful for handling outliers (Ekblom, 1973; Farquharson, 1998).

The second essential inversion element is defining the regularization functional.

If there is one model that has a misfit equal to the desired tolerance, then there are

infinitely many other models which can fit to the same degree. The challenge is to

find the model that has both the desired characteristics and is compatible with a priori

information. A single model can be selected from an infinite ensemble by measuring

the length, or norm, of each model. Then the smallest, or sometimes largest, member

can be isolated. Our goal is to design a norm that embodies our prior knowledge and,

when minimized, yields a realistic candidate for the solution of our problem. The

norm can penalize variation from a reference model, spatial derivatives of the model,

or some combination of these. We denote this norm by fm and write it in a matrix

form, for example,

fm(m) =
1
2
kWm(m�mref)k2

2: (2.4)

Wm is a matrix and mref is a reference model (which could be zero). The matrix Wm

can be a stacked combination of matrices weighted by a�:

Wm = [asI; axW>x ; ayW>y ; azW>
z ]>: (2.5)

Here, Wm is a combination of smallness and first-order smoothness in the x, y, and z

directions. Each of the W matrices is, in fact, a discrete representation of an integral
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(cf. Oldenburg and Li (2005)).

Z
W

�
ws(m�mre f )

�2 dV (smallness);Z
W

�
wx

dm
dx

�2

dV (x-smoothness);

Z
W

�
wy

dm
dy

�2

dV (y-smoothness);

Z
W

�
wz

dm
dz

�2

dV (z-smoothness);

(2.6)

The final regularization, Wm, can be a weighted sum of these, with a� being applied

as scalars or diagonal matrices, with varying weights for each cell or cell face (cf. Old-

enburg and Li (2005); Haber (2015)). Additional weightings can also be incorporated

through Wm, such as depth weighting, which is important in potential field inversions

(such as magnetics and gravity), or sensitivity weightings to prevent model structure

from concentrating close to sources or receivers (Li and Oldenburg, 1996, 2000b). The

regularization functionals addressed provide constraints on the model in a weak form;

that is, a single number is used to characterize the entire model. Strong constraints that

work within each cell can often be provided in the form of upper and lower bounds;

these bounds will be incorporated in the following section. The l2 norms referred to

above are appropriate for many problems, however models norms, such as lp-norms,

total variation, minimum support stabilizing functionals, or rotated smoothness oper-

ators that favor different character and / or include additional information can also be

designed (cf. Oldenburg (1984); Oldenburg and Li (2005); Claerbout and Muir (1973);

Strong and Chan (2003); Zhdanov (2002); Li and Oldenburg (2000a)). For example:

Z
jwp(m�mre f )jpdV (weighted-lp norm) (2.7)
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The potential to have different norms tailored to a specific problem, with the additional

functionality of localized weightings and reference models, provides the user with

the capability of designing a regularization that favors a solution that is compatible

with existing knowledge about the model. This task is not trivial, requires careful

thought, and must often be re-evaluated and adjusted as the geophysicist iterates over

the inversion procedure (Figure 2.1).

Statement of the inverse problem

The purpose of this section is to pose our inverse problem in a mathematically precise

way and to provide a methodology by which a solution can be achieved. In the work

that follows, we outline a specific methodology that we will later demonstrate. We for-

mulate the inverse problem as a problem in optimization, where we define an objective

function, based on the data misfit and model regularization, and aim to find a model

which sufficiently minimizes it. Many variants of this formulation are possible.

At this stage of the workflow, we have on hand all of the necessary components for

formulating the inverse problem as an optimization problem. We have the capability

to forward model and generate predicted data, assess the data misfit using fd , and a

tolerance on the data misfit has already been specified. A regularization functional,

fm, and additional strong constraints on the model have been identified, such as upper

and lower bounds: mL
i �mi �mH

i . The sought model is one that minimizes fm and

also reduces the data misfit to some tolerance, f�d . However, a reduction in data misfit

requires that the model have increased structure, which typically is at odds with the

assumptions we impose in the construction of fm, meaning that the fd and fm are

antagonistic. To address this and still pose the inversion as an optimization problem,
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we design a composite objective function:

f(m) = fd(m)+bfm(m); (2.8)

where b is a positive constant. It is often referred to as the trade-off parameter, re-

gression parameter, regularization parameter, or Tikhonov parameter (Tikhonov and

Arsenin, 1977). When b is very large, the minimization of f(m) produces a model

that minimizes the regularization term and yields a large fd(m). Alternatively, when b

is very small, minimization of f(m) produces a model that fits the data very well but

is contaminated with excessive structure so that fm(m) is large. The inverse problem

is posed as:

minimize
m

f(m) = fd(m)+bfm(m)

s:t: fd � f
�
d ; mL

i �mi �mH
i :

(2.9)

Since the value of b is not known a priori, the above optimization problem can be

solved at many values of b to produce a trade-off, or Tikhonov, curve (cf. Parker

(1994); Hansen (1998)). An optimum value, b �, can be found so that minimizing

equation 2.8 with b � produces a model with misfit f�d . The value of b � can be found

via cooling techniques where the b is progressively reduced from some high value

and the process stopped when the tolerance is reached or by using two-stage methods

(cf. Parker (1977)). There are other strategies for selecting the trade-off parameter

including the L-curve technique (Hansen, 1992), which attempts to find the point of

greatest curvature in the Tikhonov curve and Generalized Cross Validation (Wahba,

1990; Golub et al., 1979; Haber and Oldenburg, 2000; Oldenburg and Li, 2005; Far-

quharson and Oldenburg, 2004).
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The optimization posed in equation 2.9 is almost always non-linear. It is linear

only in a special case, where the forward mapping is a linear functional of the model,

fm and fd are written as l2 norms, b is known, and there are no imposed bound con-

straints. This rarely happens in practice, requiring that iterative optimization methods

be employed to find a solution. Gradient-based methods are commonly used and we

refer the reader to Nocedal and Wright (1999) for background and introductions to the

relevant literature. For geophysical problems, Gauss-Newton techniques have proven

to be valuable and practical. For l2 norms, we write the objective function as:

f(m) =
1
2
jjWd(F [m]�dobs)jj22 +

1
2

b jjWm(m�mref)jj22: (2.10)

The gradient is given by:

g(m) = J[m]>W>
d Wd(F [m]�dobs)+bW>mWm(m�mref); (2.11)

where J[m] is the sensitivity or Jacobian. The components, J[m]i j, specify how the ith

datum changes with respect to the jth model parameter; these changes will be discussed

in more detail in the next section. At the kth iteration, beginning with a model, mk, we

search for a perturbation, dm, which reduces the objective function. Linearizing the

forward simulation by:

F [mk +dm]� F [mk]+ J[mk]dm (2.12)

and setting the gradient equal to zero yields the standard Gauss-Newton equations to
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be solved for the perturbation dm:

(J[m]>W>d WdJ[m]+bW>mWm)dm =�g(m): (2.13)

The updated model is given by:

mk+1 = mk + gdm; (2.14)

where g 2 (0;1] is a coefficient that can be found by a line search. Setting g = 1 is the

default and a line search is necessary if f(mk+1)� f(mk).

The iterative optimization process is continued until a suitable stopping criterion

is reached. Completion of this iterative process yields a minimization for particular

value of the trade-off parameter, b . If we are invoking a cooling schedule, and if the

desired misfit tolerance is not yet achieved, b is reduced and the iterative numerical

optimization procedure is repeated.

Sensitivities

A central element in the above approach is the computation of the sensitivities. The

sensitivity functional is defined by:

J[m] =
¶F [m]

¶m
= P

�
¶u
¶m

�
(2.15)

where P is a linear projection and d� indicates total difference. There are numerous

approaches to computing the sensitivity, but the chosen methodologies are dictated by

the size of the problem. The discrete sensitivity matrix, J, is a dense N�M matrix,

where N is the number of data and M is the number of model parameters. For some
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problems, J can be computed directly and stored. Ultimately, this computation and

storage demands the solution of numerous forward problems (cf. Haber (2015)). In

another approach, we can factor J[m] in symbolic form. In the general case, we solve

for the sensitivity implicitly by taking the derivative of C(m;u) = 0 (equation 2.2) to

yield:

ÑmC(m;u)dm +ÑuC(m;u)du = 0; (2.16)

where Ñ� indicates partial difference and both ÑmC(m;u) and ÑuC(m;u) are ma-

trices. For a given model, ÑuC(m;u) corresponds to the forward simulation opera-

tor. If the forward problem is well-posed, then the matrix is invertible (Haber, 2015).

Equation 2.16 can be rearranged to:

du =�(ÑuC(m;u))�1
ÑmC(m;u)dm; (2.17)

and combined with equation 2.15 to obtain a formula for the sensitivity matrix. We

note that this matrix is dense, often large, and need not actually be formed and stored

and the inverse of ÑuC(m;u) need not be formed explicitly.

Inversion as optimization

Once the inverse problem has been stated in an optimization framework (equation

2.9), an appropriate optimization routine can be selected. For example, if bound con-

straints are incorporated, we can use a projected Gauss-Newton algorithm. In large-

scale inversions, special attention may have to be given to ensuring a memory efficient

optimization algorithm. However, the underlying mechanics of the algorithms often

remain unchanged. In a geophysical inversion, we require a model that is consistent
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with a priori information and known, or assumed, statistical distributions (e.g. the

discrepancy principle). As such, the stopping criteria of the inversion are often imple-

mented differently than traditional optimization algorithms or a series of incomplete

optimization algorithms are invoked while changing the objective function (Oldenburg

and Li, 2005; Haber, 2015; Haber et al., 2000).

The optimization of the stated inverse problem provides the machinery to obtain a

mathematical solution. However, before the model is accepted as a viable candidate,

there are numerous questions that should be investigated. For example, some questions

to address might include: (a) How well does the recovered model fit the observed

data? (b) Is there bias in the misfits between the observed and predicted data? (c)

What was the path for the convergence? (d) Is there too much or too little structure?

(e) Does the model fit with prior knowledge and other data sets? The final results

and details about how the inversion algorithm has performed all provide clues as to

whether the constructed model can be accepted or if elements in our procedure or its

numerical implementation need to be altered and the inversion rerun. These might

include: adjusting the assigned uncertainties in the misfit function; altering the model

regularization; or, changing aspects of the numerical computations.

2.2.3 Evaluation/interpretation

In this section, we return to the initial question posed, which the inversion was de-

signed to help answer. Questions of interest might include: (a) Are the interesting

features supported by the data or are they artifacts?; (b) Does the result make sense

geologically and geophysically?; and (c) Are there interesting features that should be

investigated further? Addressing these questions usually involves repeating the inver-

sion process with appropriate modifications (cf. Oldenburg and Li (2005); Pidlisecky
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et al. (2011); Lines et al. (1988)). As such, we require an implementation that is inher-

ently and unequivocally modular, with all pieces available for manipulation. Black-

box software, where the implementations are hidden, obfuscated, or difficult to ma-

nipulate, does not promote experimentation and investigation. Exposing the details

of the implementation to the geophysicist in a manner that promotes productivity and

question-based interrogation is the goal of SIMPEG and is the topic of the next section.

2.3 Modular implementation

An overwhelming amount of choices must be made while working through the forward

modeling and inversion process (Figure 2.1). As a result, software implementations of

this workflow often become complex and highly interdependent, making it difficult

to interact with other scientists or to ask them to pick up and change the work. Our

approach to handling this complexity is to propose a framework, Figure 2.2, which

compartmentalizes the implementation of inversions into various units. We present

the framework in this specific modular style, as each unit contains a targeted subset

of choices crucial to the inversion process. The aim of the SIMPEG framework, and

implementation, is to allow users to move between terminology, math, documentation,

and code with ease, such that there is potential for development in a scalable way.

The SIMPEG implementation provides a library that mimics the framework shown in

Figure 2.2, with each unit representing a base class. These base classes can be inherited

in specific geophysical problems to accelerate development as well as to create code

that is consistent between geophysical applications.
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2.3.1 Implementation choices

We chose Python (Van Rossum and Drake Jr, 1995) for the implementation of SIM-

PEG. Python supports object-oriented practices and interactive coding, has extensive

support for documentation, and has a large and growing open source scientific com-

munity (Lin, 2012). As an interpreted language, however, there are occasionally bot-

tlenecks on speed or memory. These inefficiencies may mean that the code will not be

able to scale to a production quality code. However, these computational bottlenecks

can often be identified through profiling and can be written in a lower-level language

and wrapped in Python. Additionally, these problems are admissible when the goal

of the software is clear: we require an interactive research tool where geophysical

problems from many disciplines live in one place to enhance experimentation and dis-

semination of new ideas. To enhance the dissemination of our work, we have released

our work under the permissive MIT license for open source software. The MIT license

neither forces packages that use SIMPEG to be open source, nor does it restrict com-

mercial use. We have also ensured that we have followed best practices, with regard to

version control, code-testing, and documentation (Wilson et al., 2014).

2.3.2 Overview

As discussed in the previous section, the process of obtaining an acceptable model

from an inversion generally requires the geophysicist to perform several iterations of

the inversion workflow while rethinking and redesigning each piece of the framework

to ensure it is appropriate in the current context. Inversions are experimental and em-

pirical by nature and our software package is designed to facilitate this iterative pro-

cess. To accomplish this iterative process, we have divided the inversion methodology

into eight major components (Figure 2.2). The Mesh class handles the discretization
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of the earth and also provides numerical operators. The forward simulation is split

into two classes: the Survey and the Problem. The Survey class handles the

geometry of a geophysical problem as well as sources. The Problem class handles

the simulation of the physics for the geophysical problem of interest. Although cre-

ated independently, these two classes must be paired to form all of the components

necessary for a geophysical forward simulation and calculation of the sensitivity. The

Problem creates geophysical fields, given a source from the Survey. The Survey

interpolates these fields to the receiver locations and converts them to the appropri-

ate data type (for example, by selecting only the measured components of the field).

Each of these operations may have associated derivatives, with respect to the model

and the computed field; these associated derivatives are included in the calculation

of the sensitivity. For the inversion, a DataMisfit is chosen to capture the good-

ness of fit of the predicted data and a Regularization is chosen to handle non-

uniqueness. These inversion elements and an Optimization routine are combined

into an inverse problem class (InvProblem). InvProblem is the mathematical

statement (i.e. similar to equation 2.9) that will be numerically solved by running an

Inversion. The Inversion class handles organization and dispatch of directives

between all of the various pieces of the framework.

The arrows in Figure 2.2 indicate what each class takes as a primary argument. For

example, both the Problem and Regularization classes take a Mesh class as

an argument. The diagram does not show class inheritance, as each of the base classes

outlined have many subtypes that can be interchanged. The Mesh class, for example,

could be a regular Cartesian mesh or a cylindrical coordinate mesh, which have many

common properties. We can exploit these common features, such as both meshes being

created from tensor products, through inheritance of base classes; differences can be
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Figure 2.2: SIMPEG framework indicating the flow of information. In the im-
plementation, each of these modules is a base class.

expressed through subtype polymorphism. We refer the reader to the online, up-to-

date documentation (http://docs.simpeg.xyz) to observe the class inheritance structure

in depth.

2.3.3 Motivating example

We will use the DC resistivity problem from geophysics to motivate and explain the

various components of the SIMPEG framework. This example will be referred to

throughout this section. We will introduce the example briefly here and refer the reader

to Appendix B.2.4 for a more in-depth discussion. The governing equations for DC
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resistivity are:

Ñ �~j = I(d (~r�~rs+)�d (~r�~rs�)) = q

1
s

~j =�Ñf

(2.18)

where s is the electrical conductivity, f is the electric potential, and I is the input cur-

rent at the positive and negative dipole locations~rs� , captured as Dirac delta functions.

In DC resistivity surveys, differences in the potential field, f , are sampled using dipole

receivers to collect observed data. To simulate this partial differential equation (PDE)

(or set of PDEs, if there are multiple current injection locations), we must discretize

the equation onto a computational mesh.

2.3.4 Mesh

Any numerical implementation requires the discretization of continuous functions into

discrete approximations. These approximations are typically organized in a mesh,

which defines boundaries, locations, and connectivity. In geophysical simulations, we

require the definitions of averaging, interpolation, and differential operators for any

mesh. Throughout our work, we have implemented discretization techniques, using a

staggered mimetic finite volume approach (Hyman and Shashkov, 1999; Hyman et al.,

2002). For an in-depth discussion of the finite volume techniques employed in this

thesis, we refer the reader to Appendix B. This work has resulted in an open source

package called discretize, which provides finite volume techniques abstracted

across four mesh types: (1) tensor product mesh; (2) cylindrically symmetric mesh; (3)

logically rectangular, non-orthogonal mesh; and (4) octree and quadtree meshes. The

techniques and interface to the methodologies are specifically tailored for efficiency

and accessibility for geophysical inverse problems. To create a new Mesh instance, a

TensorMesh class can be selected from the discretize module and instantiated
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with a list of vectors: Here, we import the discretize library as well as NumPy

import discretize # See Appendix A and Cockett et al. 2016
import numpy as np
import scipy.sparse as sp
hx = np.ones(30)
hy = np.ones(30)
mesh = discretize.TensorMesh([hx, hy])

Program 2.1: Creation of a 2D tensor product mesh using the discretize
package discussed in Appendix B.

(np) and SciPy’s sparse matrix package (sp) (Oliphant, 2007; Jones et al., 2001). The

vectors hx and hy describe the cell size in each mesh dimension. The dimension of

the mesh is defined by the length of the list, requiring very little change to switch mesh

dimensions or type. Once an instance of a mesh is created, access to the properties

and methods, shown in Table 2.1, is possible. Additional methods and visualization

routines are also included in the Mesh classes. Of note in Table 2.1 are organizational

properties (such as counting and geometric properties), locations of mesh variables as

Cartesian grids, differential and averaging operators, and interpolation matrices. We

can readily extend the mesh implementation to other types of finite volume meshes (for

example, octree (Haber and Heldmann, 2007), logically rectangular non-orthogonal

meshes (Hyman et al., 2002), and unstructured meshes (Ollivier-Gooch and Van Al-

tena, 2002)). Additionally, this piece of the framework may be replaced by other

methodologies such as finite elements.

With the differential operators readily accessible across multiple mesh types, sim-

ulation of a cell-centered discretization for conductivity, s , in the DC resistivity prob-

lem is straightforward. The discretized system of equations, B.4, can be written as:

A(s)u = D(Mf
1=s

)�1D>u =�q; (2.19)
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Table 2.1: Selected Mesh class properties with explanations.

Property or Function Explanation
dim Dimension of the mesh
x0 Location of the origin
nC, nN, nF, nE The number of cells, nodes, faces, or edges. (e.g. nC is

the total number of cells)
vol, area, edge Geometric measurements for the mesh
gridN, gridCC, etc. Array of grid locations
nodalGrad Gradient of a nodal variable! edge variable
faceDiv Divergence of a face variable! cell-centered variable
edgeCurl Curl of a edge variable! face variable
cellGrad Gradient of a cell-centered variable! face variable
aveF2CC, aveN2CC,
etc.

Averaging operators (e.g. F!CC, takes values on faces
and averages them to cell-centers)

getInterpolationMat(loc) Interpolation matrix for xyz locations

where D and D> are the divergence and ‘gradient’ operators, respectively. This equa-

tion is assuming Dirichlet boundary conditions and a weak formulation of the DC re-

sistivity equations, as in Section B.2.5. The conductivity, s , is harmonically averaged

from cell-centers to cell-faces to create the matrix (Mf
1=s

)�1 (Pidlisecky et al., 2007).

Note that the matrix (Mf
1=s

)�1 is diagonal when the physical property is isotropic or

has coordinate anisotropy on a tensor product mesh, so the inverse is trivial. Using our

discretize package, this equation is written as:

D = mesh.faceDiv
Msig = mesh.getFaceInnerProduct(sigma, invProp=True, invMat=True)
A = D*Msig*D.T

Program 2.2: Creation of the matrix A(s) for the direct current resistivity prob-
lem. See Appendix B for details on finite volume.

The code is easy to read, looks similar to the math, can be built interactively us-

ing tools such as IPython (Pérez and Granger, 2007), and is not dependent on the

dimension of mesh used. Additionally, it is decoupled from the mesh type. For ex-
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ample, Figure 2.3 is generated by solving a DCProblem for three different mesh

types: TensorMesh; TreeMesh; and, CurvilinearMesh. Other than the spe-

cific mesh generation code, no other modifications to the DC problem were neces-

sary (see the online examples provided in SIMPEG). Given the electrode locations,

a q can be constructed on each mesh and the system, A(s)u = �q, can be solved.

There are many excellent packages available to solve matrix equations and we have

created a library to interface many of these direct and iterative solvers. The package,

pymatsolver, comes with a few different types of Solver objects that provide a

simple and common interface to Super-LU, Paradiso, and Mumps as well as including

a few simple preconditioners for iterative solvers (Li, 2005; Schenk and Gartner, 2004;

Duff et al., 1986; Balay et al., 2012). The potential field can be projected onto the re-

from pymatsolver import PardisoSolver # Solver wrapping utilities
Ainv = PardisoSolver(A) # Create a solver object
u = Ainv * (- q)
mesh.plotImage(u)

Program 2.3: Solving and plotting the fields (f ) for direct current resistivity us-
ing pymatsolver and visualization utilities in SIMPEG.

ceiver electrode locations through interpolation matrices, which are constructed by the

Mesh class. Additionally, there are multiple visualization routines that have been in-

cluded in the Mesh class for rapid visualization and interrogation of geophysical fields

and physical properties (Figure 2.3). We note that these code snippets can be easily be

combined in a script, highlighting the versatility and accessibility of the Mesh classes

in discretize.

This script will be expanded upon and segmented into the various pieces of the

framework in the following sections. We find that the development of geophysical

codes is often iterative and requires ‘scripting’ of equations. Only after these equations
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Figure 2.3: Solving the DC resistivity problem for a dipole and using the meshes
visualization routine for the potential, f , for three different mesh types: (a)
TensorMesh, (b) TreeMesh, and (c) CurvilinearMesh. The potential has
been interpolated onto the tensor mesh for visualization.

are correct, as demonstrated by an appropriate test (e.g. Tests.checkDerivative),

do we formalize and segment our script to enable a geophysical inversion to be run.

The toolbox that SIMPEG provides promotes this interactive and iterative style of de-

velopment.

2.3.5 Forward simulation

The forward simulation in SIMPEG is broken up into a Survey class and a Problem

class. The Problem class contains the information and code that capture both the

physics used to describe the connection between a physical property distribution and

the fields/fluxes that are measured in a geophysical survey. The Survey class con-

tains information about the observed data and the geometry of how to collect the data

(e.g. locations and types of receivers and sources) given a Problem that simulates

fields. The Problem and the Survey must be paired together to simulate predicted

data. We decided on this separation of the code because it is possible to have multiple

mathematical descriptions, of varying complexities, which explain the same observed

data. For example, a seismic simulation could have multiple approximations to the
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physics, which increase in complexity and accuracy, from straight-ray tomography or

Eikonal tomography to full waveform simulation. Additionally, there are often mul-

tiple types of geophysical surveys that could be simulated from the same Problem

class.

Table 2.2: Base Problem class properties with explanations.

Property or Function Explanation
fields(m) Calculation of the fields given a model
Jvec(m, v) Sensitivity times a vector
Jtvec(m, v) Adjoint sensitivity times a vector
Jfull(m) Full sensitivity matrix
mapping Maps the model to a physical property

The crucial aspects of the Problem class are shown in Table 2.2 and the proper-

ties and methods of the Survey class are shown in Table 2.3. We note that each of

the sub-classes of Problem will implement fields and sensitivities in a different way,

likely with additional methods and properties. Furthermore, the choice of terminology

becomes clearer when these classes are inherited and used in a specific geophysical

method (e.g. a DCProblem or EMProblem). For the DCProblem, the fields

can be created by constructing A(m) and solving with the source terms, Q, which

will be provided by the DCSurvey’s source list (srcList). Each source has at

least one receiver associated with it and the receivers can create a matrix, P, which

project the fields, u, onto the data-space. For example, in the DC problem, a dipole

receiver samples the potential at each electrode location and computes the difference

to give a datum. We note that the process of computing a datum may be more in-

volved and have derivatives with respect the computed fields and, possibly, the model.

We solve much of the organizational bottlenecks through general receiver and source

classes, which can be inherited and tailored to the specific application. The mapping
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in the Problem provides a transformation from an arbitrary model to a discretized

grid function of physical properties. For example, log-conductivity is often used in

the inverse problem for DC resistivity, rather than parameterizing directly in terms of

conductivity. If this choice is made for the model, an appropriate map (i.e. the expo-

nential) must be provided to transform from the model space to the physical property

space (cf. Heagy et al. (2014)).

Table 2.3: Selected Survey class properties with explanations.

Property or Function Explanation
dobs, nD dobs, number of data
std Estimated standard deviations
srcList List of sources with associated receivers
dpred(m) Predicted data given a model, dpred(m)
projectFields(m, u) Projects the fields, P(m;u)

projectFieldsDeriv(m,
u)

Derivative of the projection, dP(m;u)
dm

residual(m) dpred(m)�dobs

2.3.6 DC resistivity forward simulation

We present a simple DC-resistivity survey to demonstrate some of the components

of SIMPEG in action. We use a set of Schlumberger arrays to complete a vertical

sounding. In this example, we have taken our scripts from the previous section de-

scribing the forward simulation and combined them in a package called SimPEG.DC

(http://simpeg.xyz). We use the 3D tensor mesh to run the forward simulation for the

data of this problem. Here the srcList is a list of dipole sources (DC.SrcDipole),

each of which contains a single receiver, (DC.RxDipole). Similar to the illustration

in Figure 2.2, the Problem and the Survey must be paired for either to be used to

simulate fields and/or data. These elements represent the major pieces of any forward
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from SimPEG.EM.Static import DC
survey = DC.SurveyDC(srcList)
problem = DC.ProblemDC(mesh)
problem.pair(survey)
data = survey.dpred(sigma)

Program 2.4: Pairing the Problem and Survey objects to create predicted
data, dpred.

simulation in geophysics; they are crucial and must be well-tested for accuracy and

efficiency before any attempt is made at setting up the inverse problem.

2.3.7 Sensitivities

The sensitivity and adjoint will be used in the optimization routine of the inversion.

Inefficient or inaccurate calculation of the sensitivities can lead to an extremely slow

inversion. This is critical in large-scale inversions, where the dense sensitivity ma-

trix may be too large to hold in memory directly. As discussed in the methodology

section, the sensitivity matrix need not be explicitly created when using an iterative

optimization algorithm, such as Gauss-Newton (2.13), solved with a conjugate gradi-

ent approach. The calculation of vector products with the sensitivity matrices is an

important aspect of SIMPEG, which has many tools to make construction and testing

of these matrices modular and simple. For the DC resistivity example, the discretized

governing equations are written as: C(m;u) = A(m)u�q = 0. We can implement the

sensitivity equations 2.15 and 2.17 to yield:

J =�P(A(m)�1
ÑmC(m;u)); (2.20)

where ÑmC(m;u) is a known sparse matrix, A(m) is the forward operator and is

equivalent to ÑuC(m;u), and P is a projection matrix (cf. Pidlisecky et al. (2007)).

The sensitivity matrix is dense and holding it in memory may not be possible. If an
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iterative solver is used in the optimization, only matrix vector products are necessary

and the sensitivity need not be explicitly calculated or stored. Program 2.5 outlines

the calculation of Jvec, given a model, m, the fields, u, and a vector to multiply, v.

In Program 2.5, we draw the distinction between the model, m, and the conductivity,

sig, which are connected through a mapping, s = M (m), and associated derivatives.

The matrix, ÑmC(m;u), is denoted dCdm and formed by looping over each source in

the DC resistivity survey.

1 def Jvec(self, m, v, u=None):
2 # Set current model; clear dependent property A(m)
3 self.curModel = m
4 sigma = self.curModel.transform # s = M (m)
5 if u is None:
6 # Run forward simulation if u not provided
7 u = self.fields(self.curModel)
8 else:
9 shp = (self.mesh.nC, self.survey.nTx)

10 u = u.reshape(shp, order=’F’)
11

12 D = self.mesh.faceDiv
13 G = self.mesh.cellGrad
14 # Derivative of model transform, ¶s

¶m
15 dsigdm_x_v = self.curModel.transformDeriv * v
16

17 # Take derivative of C(m;u) w.r.t. m
18 dCdm_x_v = np.empty_like(u)
19 # loop over fields for each transmitter
20 for i in range(self.survey.nTx):

21 # Derivative of inner product,
�

M f
1=s

��1

22 dAdsig = D * self.dMdsig( G * u[:,i] )
23 dCdm_x_v[:, i] = dAdsig * dsigdm_x_v
24

25 # Take derivative of C(m;u) w.r.t. u
26 dCdu = self.A
27 # Solve for ¶u

¶m
28 dCdu_inv = self.Solver(dCdu, **self.solverOpts)
29 P = self.survey.getP(self.mesh)
30 J_x_v = - P * mkvc( dCdu_inv * dCdm_x_v )
31 return J_x_v

Program 2.5: Sensitivity times a vector method for the DCProblem.
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2.3.8 Inversion elements

As indicated in the methodology section, there are two key elements needed for a

geophysical inversion: DataMisfit and Regularization. The DataMisfit

must have a way to calculate predicted data and, as such, it takes a paired survey as an

initial argument, which allows forward simulations to be completed. DataMisfit

and Regularization have similar interfaces, which are shown in Table 2.4. The

DataMisfit class also has a property, targetMisfit, for the target misfit, which

can be checked by an InversionDirective and used as a stopping criteria. As

discussed in the methodology section, the Regularization is defined indepen-

dently from the forward simulation. The regularization is with respect to the model,

which may or may not be on the same mesh as the forward simulation (i.e. meshI 6=

meshF ). In this case, a mapping of a model to a physical property on the forward sim-

ulation mesh is necessary for the Problem. The Regularization class also has a

mapping property, which allows a wide variety of regularizations to be implemented

(e.g. an active cell map used to ignore air cells). As such, the Regularization

mapping is often independent from the mapping in the Problem class, which out-

puts a physical property. Included in the SIMPEG package are basic Tikhonov regular-

ization routines and simple l2 norms for both Regularization and DataMisfit

classes. Each of these classes has properties for the appropriate model and data weight-

ings, as discussed in the previous section (e.g. Wm and Wd). These classes are readily

extensible, such that they can be customized to specific problems and applications (for

example, considering l1 or lp norms or customized regularizations).
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Table 2.4: Common functions for the Regularization, and DataMisfit
classes.

Function Explanation
obj(m) Evaluate the functional given a model when the class is

called directly.
obj.deriv(m) First derivative returns a vector.
obj.deriv2(m, v) Second derivative as an implicit operator.

2.3.9 Inverse problem and optimization

The InvProblem combines the DataMisfit and Regularization classes by

introducing a trade-off parameter, b . In addition to the trade-off parameter, there are

methods that evaluate the objective function and its derivatives (Table 2.4). Additional

methods can save fields so that information is not lost between evaluation of the ob-

jective function and the derivatives. The InvProblem may also include bounds on

the model properties so that they can be used in the optimization routine. If we con-

sider a joint or integrated inversion, multiple data misfit functions, employing different

physics, and that multiple types of regularization functionals may be summed together,

possibly with relative weightings, we can define the InvProblem (cf. Lines et al.

(1988); Holtham and Oldenburg (2010); Heagy et al. (2014)). Once the InvProblem

can be evaluated to a scalar with associated derivatives, an Optimization can ei-

ther be chosen among the ones included in SIMPEG or provided by an external pack-

age. Optimization routines in SIMPEG include steepest descent, L-BFGS, and Inexact

Gauss-Newton (cf. Nocedal and Wright (1999)). The components are relatively sim-

ple to hook up to external optimization packages (for example, with the optimization

package in SciPy (Jones et al., 2001)).
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2.3.10 Inversion

The Inversion conducts all communication between the various components of the

framework and is instantiated with an InvProblem object. The Inversion has

very few external methods but contains the list of directives that are executed through-

out the inversion. Each InversionDirective has access to the components of the

inversion framework and can thus access and change any of these components while

the inversion is running. A simple directive may print optimization progress or save

models to a database. More complicated directives may change or compute parame-

ters such as, b , reference models, data weights, or model weights. These directives are

often guided by heuristics, but versions can often be formalized (see, for example, the

iterative Tikhonov style inversion (Tikhonov and Arsenin, 1977; Parker, 1994; Olden-

burg and Li, 2005)). There are many computational shortcuts that may be investigated,

such as how many inner and outer CG iterations to complete in the inexact Gauss-

Newton optimization and whether the number of iterations should change as the al-

gorithm converges to the optimal model. The directiveList in the Inversion

encourages heuristics, which geophysicists often complete ‘by hand’, to be codified,

combined, and shared via a plug-in style framework.

2.3.11 DC resistivity inversion

We will build on the example presented in Section 2.3.6, which has a survey setup

that only provides enough information for a vertical sounding. As such, we will

decouple our 3D forward mesh and 1D inversion mesh and connect them through a

mapping (cf. Kang et al. (2015b)). Additionally, since electrical conductivity is a

log-varying parameter, we will also construct a model space that is optimized in log

space. Both of these model transformations will be handled with a single map, M ,
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where s = M (m). We have provided a number of common mapping transformations

from SimPEG import Maps
mapping = Maps.ExpMap(mesh) * Maps.SurjectVertical1D(mesh)
sigma = mapping * model

Program 2.6: Creation and chaining together of multiple mapping properties for
a model of s .

in the SimPEG.Maps package and these can be easily combined with a multiplication

symbol. Additionally, when using these maps, we calculate the derivatives using the

chain rule, allowing them to be easily included in the sensitivity calculation (cf. Pro-

gram 2.5, line 15). Figure 2.5 demonstrates this mapping visually. The 1D model is in

log(s), shown in Figure 2.4(a) as a black solid line, and the transformation produces

a 3D sigma vector, which we plotted in Figure 2.4(b). We can now use the same sim-

ulation machinery as discussed in Section 2.3.6, with a single change: Synthetic data,

from SimPEG.EM.Static import DC
problem = DC.ProblemDC(mesh, sigmaMap=mapping)

Program 2.7: Instantiation of the direct current resistivity problem with a map-
ping for the s property.

dobs, are created using the 1D log-conductivity model and adding 1% Gaussian noise.

When creating the regularization inversion element, we note again that the mapping

parameter can be used to regularize in the space that makes the most sense. In this

case, we will regularize on a 1D mesh in log-conductivity space; as such, we will sup-

ply only a 1D tensor mesh to the regularization. An inversion is run by combining the

tools described above. Figure 2.2 illustrates how the components are put together. We

note that there are many options and inputs that can enhance the inversion; refer to the

online up-to-date documentation (http://docs.simpeg.xyz). The result of this inversion

can be seen in Figure 2.5(a) and (b) for the predicted data and model, respectively.

57

http://docs.simpeg.xyz


mesh1D = discretize.TensorMesh([mesh.hz])
dmis = DataMisfit.l2_DataMisfit(survey)
reg = Regularization.Tikhonov(mesh1D)
opt = Optimization.InexactGaussNewton()
invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
inv = Inversion.BaseInversion(invProb)
mopt = inv.run(m0)

Program 2.8: Creating a boiler plate inversion at a low level.

Figure 2.4: Illustration of mapping in DC inversion. (a) 1D log conductivity
model. (b) 3D conductivity model.

Figure 2.5: (a) Observed (black line) and predicted (red line) apparent resistivity
values. (b) True and recovered 1D conductivity model.
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2.4 Conclusions

Producing an interpretation from geophysical data through an inversion is an iterative

process with many moving pieces. A number of inversion components, techniques, and

methodologies have become standard practice. The development of new methodolo-

gies to address the evolving challenges in the geosciences will build upon and extend

these standard practices, requiring experimentation with, and recombination of, exist-

ing techniques. To facilitate this combinatorial experimentation, we have organized the

components of geophysical inverse problems in a comprehensive, modular framework.

Our implementation of this framework, SIMPEG (http://www.simpeg.xyz), provides

an extensible, well-tested toolbox and infrastructure that supports problems, including

electromagnetics, fluid flow, seismic, and potential fields. As SIMPEG is formulated

with the inverse problem as its core focus, many design choices have been made to en-

sure that sensitivities are efficient to compute and are readily available; these choices

have shown to be advantageous for integrated geophysical inversions. The modular

framework that we suggest splits the code into components, which are motivated di-

rectly by geophysical methodology and terminology. Splitting the code allows each

piece to be improved by specialists, while promoting quantitative communication be-

tween researchers.

To accelerate the dissemination and adoption of SIMPEG in the wider community,

we have made the entire project open source under the permissive MIT License. The

usability of this framework has been a focus of SIMPEG and we strive to use best prac-

tices of continuous integration, documentation (http://docs.simpeg.xyz), unit-testing,

and version-control. These practices are key to have in place as more modules and

packages are created by the community.
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Chapter 3

Richards equation

3.1 Introduction

Studying the processes that occur in the vadose zone, the region between the earth’s

surface and the fully saturated zone, is of critical importance for understanding our

groundwater resources. Fluid flow in the vadose zone is described by the Richards

equation and parameterized by hydraulic conductivity, which is a nonlinear function

of pressure head (Richards, 1931; Celia et al., 1990). Typically, hydraulic conduc-

tivity is heterogeneous and can have a large dynamic range. In any site characteri-

zation, the spatial estimation of the hydraulic conductivity function is an important

step. Achieving this, however, requires the ability to efficiently solve and optimize the

nonlinear, time-domain Richards equation. Rather than working with a full, implicit,

3D time-domain system of equations, simplifications are consistently used to avert the

conceptual, practical, and computational difficulties inherent in the parameterization

and inversion of the Richards equation. These simplifications typically parameterize

the conductivity and assume that it is a simple function in space, often adopting a ho-
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mogeneous or one dimensional layered soil profile (cf. (Binley et al., 2002; Deiana

et al., 2007; Hinnell et al., 2010; Liang and Uchida, 2014)). Due to the lack of con-

straining hydrologic data, such assumptions are often satisfactory for fitting observed

measurements, especially in two and three dimensions as well as in time. However,

as more data become available, through spatially extensive surveys and time-lapse

proxy measurements (e.g. direct current resistivity surveys and distributed tempera-

ture sensing), extracting more information about subsurface hydrogeologic parame-

ters becomes a possibility. The proxy data can be directly incorporated through an

empirical relation (e.g. (Archie, 1942)) or time-lapse estimations can be structurally

incorporated through some sort of regularization technique (Haber and Gazit, 2013;

Haber and Oldenburg, 1997; Hinnell et al., 2010). Recent advances have been made

for the forward simulation of the Richards equation in a computationally-scalable man-

ner (Orgogozo et al., 2014). However, the inverse problem is non-trivial, especially in

three-dimensions (Towara et al., 2015), and must be considered using modern numer-

ical techniques that allow for spatial estimation of hydraulic parameters. However,

this is especially intricate to both derive and implement due to the nonlinear, time-

dependent forward simulation and potential model dependence in many aspects of the

Richards equation (e.g. multiple empirical relations, boundary/initial conditions). To

our knowledge, there has been no large-scale inversion for distributed hydraulic pa-

rameters in three dimensions using the Richards equation as the forward simulation.

Inverse problems in space and time are often referred to as history matching prob-

lems (see Dean and Chen (2011); Dean et al. (2008); Sarma et al. (2007); Oliver and

Reynolds (2001); Šimunek et al. (2012) and reference within). Inversions use a flow

simulation model, combined with some a-priori information, in order to estimate a spa-

tially variable hydraulic conductivity function that approximately yields the observed
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data. The literature shows a variety of approaches for this inverse problem, includ-

ing trial-and-error, stochastic methods, and various gradient based methods (Bitterlich

et al., 2004; Binley et al., 2002; Carrick et al., 2010; Durner, 1994; Finsterle and Zhang,

2011; Mualem, 1976; Šimunek and van Genuchten, 1996). The way in which the com-

putational complexity of the inverse method scales becomes important as problem size

increases (Towara et al., 2015). Computational memory and time often become a bot-

tleneck for solving the inverse problem, both when the problem is solved in 2D and,

particularly, when it is solved in 3D (Haber et al., 2000). To solve the inverse prob-

lem, stochastic methods are often employed, which have an advantage in that they can

examine the full parameter space and give insights into non-uniqueness (Finsterle and

Kowalsky, 2011). However, as the number of parameters we seek to recover in an in-

version increases, these stochastic methods require that the forward problem be solved

many times, which often makes these methods impractical. This scalability, especially

in the context of hydrogeophysics has been explicitly noted in the literature (cf. Binley

et al. (2002); Deiana et al. (2007); Towara et al. (2015); Linde and Doetsch (2016)).

Derivative-based optimization techniques become a practical alternative when the

forward problem is computationally expensive or when there are many parameters to

estimate (i.e. thousands to millions). Inverse problems are ill-posed and thus to pose a

solvable optimization problem, an appropriate regularization is combined with a mea-

sure of the data misfit to state a deterministic optimization problem (Tikhonov and

Arsenin, 1977). Alternatively, if prior information can be formulated using a statis-

tical framework, we can use Bayesian techniques to obtain an estimator through the

Maximum A Posteriori model (MAP) (Kaipio and Somersalo, 2004). In the context of

Bayesian estimation, gradient based methods are also important, as they can be used

to efficiently sample the posterior (Bui-Thanh and Ghattas, 2015).
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A number of authors have sought solutions for the inverse problem, where the for-

ward problem is the Richards equation (cf. (Bitterlich and Knabner, 2002; Iden and

Durner, 2007; Šimunek et al., 2012) and references within). The discretization of the

Richards equation is commonly completed by an implicit method in time and a finite

volume or finite element method in space. Most work uses a Newton-like method

for the resulting nonlinear system, which arises from the discretization of the forward

problem. For the deterministic inverse problem using the Richards equation, previous

work uses some version of a Gauss-Newton method (e.g. Levenberg-Marquardt), with

a direct calculation of the sensitivity matrix (Finsterle and Kowalsky, 2011; Šimunek

and van Genuchten, 1996; Bitterlich and Knabner, 2002). However, while these ap-

proaches allow for inversions of moderate scale, they have one major drawback: the

sensitivity matrix is large and dense; its computation requires dense linear algebra and

a non-trivial amount of memory (cf. (Towara et al., 2015)). Previous work used either

external numerical differentiation (e.g. PEST) or automatic differentiation in order

to directly compute the sensitivity matrix (Finsterle and Zhang, 2011; Bitterlich and

Knabner, 2002; Doherty, 2004; Towara et al., 2015). Finite difference can generate

inaccuracies in the sensitivity matrix and, consequently, tarry the convergence of the

optimization algorithm. Furthermore, external numerical differentiation is computa-

tionally intensive and limits the number of model parameters that can be estimated.

The goal of this chapter is to suggest a modern numerical formulation that allows

the inverse problem to be solved without explicit computation of the sensitivity matrix

by using exact derivatives of the discrete formulation (Haber et al., 2000). Our tech-

nique is based on the discretize-then-optimize approach, which discretizes the forward

problem first and then uses a deterministic optimization algorithm to solve the inverse

problem (Gunzburger, 2003). To this end, we require the discretization of the forward
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problem. Similar to the work of (Celia et al., 1990), we use an implicit Euler method

in time and finite volume in space. Given the discrete form, we show that we can an-

alytically compute the derivatives of the forward problem with respect to distributed

hydraulic parameters and, as a result, obtain an implicit formula for the sensitivity. The

formula involves the solution of a linear time-dependent problem; we avoid computing

and storing the sensitivity matrix directly and, rather, suggest a method to efficiently

compute the product of the sensitivity matrix and its adjoint times a vector. Equipped

with this formulation, we can use a standard inexact Gauss-Newton method to solve

the inverse problem for distributed hydraulic parameters in 3D. This large-scale dis-

tributed parameter estimation becomes computationally tractable with the technique

presented in this chapter and can be employed with any iterative Gauss-Newton-like

optimization technique.

This chapter is structured as follows: in Section 3.2, we discuss the discretization

of the forward problem on a staggered mesh in space and backward Euler in time; in

Section 3.3, we formulate the inverse problem and construct the implicit functions used

for computations of the Jacobian-vector product. In Section 3.4.1, we demonstrate the

validity of the implementation of the forward problem and sensitivity calculation. In

Section 3.4, we validate the numerical implementation and compare to the literature.

Chapter 4 will expand upon the techniques introduced in this chapter to show the

effectiveness of the implicit sensitivity algorithm in comparison to existing numerical

techniques.

3.1.1 Attribution and dissemination

To accelerate both the development and dissemination of this approach, we have built

these tools on top of an open source framework for organizing simulation and inverse
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problems in geophysics (Cockett et al., 2015c). We have released our numerical im-

plementation under the permissive MIT license. Our implementation of the implicit

sensitivity calculation for the Richards equation and associated inversion implementa-

tion is provided and tested to support 1D, 2D, and 3D forward and inverse simulations

with respect to custom empirical relations and sensitivity to parameters within these

functions. The source code can be found at https://github.com/simpeg/simpeg and may

be a helpful resource for researchers looking to use or extend our implementation. I

have presented early versions of this work at two international conferences (Cockett

and Haber, 2013a,b) and have submitted a version of this manuscript for peer review

(Cockett et al., 2017).

3.2 Forward problem

In this section, we describe the Richards equations and its discretization (Richards,

1931). The Richards equation is a nonlinear parabolic partial differential equation

(PDE) and we follow the so-called mixed formulation presented in (Celia et al., 1990)

with some modifications. In the derivation of the discretization, we give special atten-

tion to the details used to efficiently calculate the effect of the sensitivity on a vector,

which is needed in any derivative based optimization algorithm.

3.2.1 Richards equation

The parameters that control groundwater flow depend on the effective saturation of

the media, which leads to a nonlinear problem. The groundwater flow equation has

a diffusion term and an advection term which is related to gravity and only acts in

the z-direction. There are two different forms of the Richards equation; they differ in

how they deal with the nonlinearity in the time-stepping term. Here, we use the most
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fundamental form, referred to as the ‘mixed’-form of the Richards equation (Celia

et al., 1990):

¶q(y)

¶ t
�Ñ � k(y)Ñy� ¶k(y)

¶ z
= 0 y 2W (3.1)

where y is pressure head, q(y) is volumetric water content, and k(y) is hydraulic

conductivity. This formulation of the Richards equation is called the ‘mixed’-form

because the equation is parameterized in y but the time-stepping is in terms of q . The

hydraulic conductivity, k(y), is a heterogeneous and potentially anisotropic function

that is assumed to be known when solving the forward problem. In this chapter, we

assume that k is isotropic, but the extension to anisotropy is straightforward (Cockett

et al., 2015c, 2016a). The equation is solved in a domain, W, equipped with boundary

conditions on ¶W and initial conditions, which are problem-dependent.

An important aspect of unsaturated flow is noticing that both water content, q ,

and hydraulic conductivity, k, are functions of pressure head, y . There are many

empirical relations used to relate these parameters, including the Brooks-Corey model

(Brooks and Corey, 1964) and the van Genuchten-Mualem model (Mualem, 1976; van

Genuchten, 1980). The van Genuchten model is written as:

q(y) =

8>><>>:
qr +

qs�qr

(1 + jayjn)m y < 0

qs y � 0
(3.2a)

k(y) =

8><>:
Ksqe(y)l(1� (1�qe(y)�m)m)2

y < 0

Ks y � 0
(3.2b)
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where

qe(y) =
q(y)�qr

qs�qr
; m = 1� 1

n
; n > 1 (3.3)

Here, qr and qs are the residual and saturated water contents, Ks is the saturated hy-

draulic conductivity, a and n are fitting parameters, and, qe(y) 2 [0;1] is the effective

saturation. The pore connectivity parameter, l, is often taken to be 1
2 , as determined by

Mualem (1976). Figure 4.1 shows the functions over a range of negative pressure head

values for four soil types (sand, loam, sandy clay, and clay). The pressure head varies

over the domain y 2 (�¥;0). When the value is close to zero (the left hand side),

the soil behaves most like a saturated soil where q = qs and k = Ks. As the pressure

head becomes more negative, the soil begins to dry, which the water retention curve

shows as the function moving towards the residual water content (qr). Small changes

in pressure head can change the hydraulic conductivity by several orders of magnitude;

as such, k(y) is a highly nonlinear function, making the Richards equation a nonlinear

PDE.

3.2.2 Discretization

The Richards equation is parameterized in terms of pressure head, y . Here, we de-

scribe simulating the Richards equation in one, two, and three dimensions. We start

by discretizing in space and then we discretize in time. This process yields a discrete,

nonlinear system of equations; for its solution, we discuss a variation of Newton’s

method.

Spatial Discretization

In order to conservatively discretize the Richards equation, we introduce the flux ~f and

rewrite the equation as a first order system of the form:
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Figure 3.1: The water retention curve and the hydraulic conductivity function for
four canonical soil types of sand, loam, sandy clay, and clay.

¶q(y)

¶ t
�Ñ �~f � ¶k(y)

¶ z
= 0 (3.4a)

k(y)�1~f = Ñy (3.4b)

We then discretize the system using a standard staggered finite volume discretiza-

tion (cf. Ascher (2008); Haber (2015); Cockett et al. (2016a), and Appendix B). This

discretization is a natural extension of mass-conservation in a volume where the bal-

ance of fluxes into and out of a volume are conserved (Lipnikov and Misitas, 2013).

Here, it is natural to assign the entire cell one hydraulic conductivity value, k, which is

located at the cell center. Such assigning leads to a piecewise constant approximation

for the hydraulic conductivity and allows for discontinuities between adjacent cells.

From a geologic perspective, discontinuities are prevalent, as it is possible to have
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large differences in hydraulic properties between geologic layers in the ground. The

pressure head, y , is also located at the cell centers and the fluxes are located on cell

faces, which lead to the usual staggered mesh or Marker and Cell (MAC) discretiza-

tion in space (Fletcher, 1988). We demonstrate the discretization in 1D, 2D and 3D on

the tensor mesh in Figure 3.2. We discretize the function, y , on a cell-centered grid,

which results in a grid function, y . We use bold letters to indicate other grid functions.

Figure 3.2: Discretization of unknowns in 1D, 2D and 3D space. Red circles are
the locations of the discrete hydraulic conductivity K and the pressure head
y . The arrows are the locations of the discretized flux ~f on each cell face.

The discretization of a diffusion-like equation on an orthogonal mesh is well-

known (see (Haber and Ascher, 2001; Fletcher, 1988; Haber et al., 2007; Ascher and

Greif, 2011) and reference within). We discretize the differential operators by using

the usual mass balance consideration and the elimination of the flux, f 1. This spatial

discretization leads to the following discrete nonlinear system of ordinary differential

1Here we assume an isotropic conductivity that leads to a diagonal mass matrix and this yields easy
elimination of the fluxes.
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equations (assuming homogeneous Dirichlet boundary conditions):

dq(y)

dt
�D diag

�
kAv(y

n+1)
�

Gy�Gz
�
kAv(y

n+1)
�

= 0 (3.5)

Here, D is the discrete divergence operator and G is the discrete gradient operator. The

discrete derivative in the z-direction is written as Gz. The values of y and k(y) are

known on the cell-centers and must be averaged to the cell-faces, which we complete

through harmonic averaging (Haber and Ascher, 2001).

kAv(y) =
1

Av
1

k(y)

(3.6)

where Av is a matrix that averages from cell-centers to faces and the division of the

vector is done pointwise; that is, we use the vector notation, (1=v)i = 1=vi. We incor-

porate boundary conditions using a ghost-point outside of the mesh (Trottenberg et al.,

2001).

Time discretization and stepping

The Richards equation is often used to simulate water infiltrating an initially dry soil.

At early times in an infiltration experiment, the pressure head, y , can be close to dis-

continuous. These large changes in y are also reflected in the nonlinear terms k(y)

and q(y); as such, the initial conditions imposed require that an appropriate time

discretization be chosen. Hydrogeologists are often interested in the complete evolu-

tionary process, until steady-state is achieved, which may take many time-steps. Here,

we describe the implementation of a fully-implicit backward Euler numerical scheme.

Higher-order implicit methods are not considered here because the uncertainty associ-

ated with boundary conditions and the fitting parameters in the Van Genuchten models
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(eq. 4.2) have much more effect than the order of the numerical method used.

The discretized approximation to the mixed-form of the Richards equation, using

fully-implicit backward Euler, reads:

F(yn+1;yn) =
q(yn+1)�q(yn)

Dt
�D diag

�
kAv(y

n+1)
�

Gy
n+1�Gz

�
kAv(y

n+1)
�

= 0

(3.7)

This is a nonlinear system of equations for yn+1 that needs to be solved numerically by

some iterative process. Either a Picard iteration (as in Celia et al. (1990)) or a Newton

root-finding iteration with a step length control can be used to solve the system. Note

that to deal with dependence of q with respect to y in Newton’s method, we require

the computation of dq

dy
. We can complete this computation by using the analytic form

of the hydraulic conductivity and water content functions (e.g. derivatives of eq. 4.2).

We note that a similar approach can be used for any smooth curve, even when the

connection between q and y are determined empirically (for example, when q(y) is

given by a spline interpolation of field data).

3.2.3 Solving the nonlinear equations

Regardless of the empirical relation chosen, we must solve 3.7 using an iterative root-

finding technique. Newton’s method iterates over m = 1;2; : : : until a satisfactory esti-

mation of yn+1 is obtained. Given yn+1;m, we approximate F(yn+1;yn) as:

F(yn+1;yn)� F(yn;m;yn)+ Jyn+1;mdy (3.8)
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