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Abstract

Inverse modeling is a powerful tool for extracting information about the subsurface

from geophysical and hydrologic data. Geophysical inverse problems are inherently

multidisciplinary, requiring elements from the relevant physics, numerical simulation,

and optimization, as well as knowledge of the geologic setting, hydrologic processes,

and a comprehension of the interplay between all of these elements. Increasingly geo-

scientists are tackling complex problems that require integration of multiple types of

information in order to better characterize the subsurface. However, many of the sub-

fields of geophysics are developing simulation and inversion approaches, algorithms,

and supporting software in isolation. This isolation is a barrier to quantitative inte-

gration and leads to inefficiencies in advancing interdisciplinary research. Greater

efficiencies, and higher quality outcomes, could be achieved if (hydro)geophysicists

had a common framework to accelerate an integrated approach. The main goal of my

thesis is to organize the components of (hydro)geophysical simulations and inverse

problems, and synthesize these into a comprehensive, modular framework.

The development of a geophysical framework requires considering a number of

disciplines and geophysical problems (e.g. electromagnetics and potential fields) to en-

sure generality as well as extensibility. However, the goal is also to have the framework

work outside of geophysics and most notably in hydrogeology; vadose zone fluid flow
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is used as a model problem. Fluid flow in the vadose zone is governed by the Richards

equation; it is parameterized by hydraulic conductivity, which is a nonlinear function

of pressure head. The computational scalability of the Richards equation inversion is

a significant challenge for three dimensional inversions in hydrogeophysics. Existing

work explicitly calculates the sensitivity matrix using finite difference or automatic

differentiation, however, for large-scale problems these methods are constrained by

computation and memory. This dissertation provides an implicit sensitivity algorithm

that enables large-scale inversion problems for distributed parameters in the Richards

equation to become tractable on modest computational resources.
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Lay Summary

Geophysical methods gather data remotely to enable insights into subsurface struc-

ture and processes (e.g. locating economic resources or monitoring environmental

changes). The information derived from geophysical methods is of crucial impor-

tance in resource exploration, environmental remediation, and the study of deep-earth

processes. Interpretation of geophysical data requires a combination of numerical sim-

ulation and inversion. Inversion is a procedure for using data to estimate an image or

model of the earth (this is similar to medical imaging). Increasingly, geoscientists are

tackling complex problems that require integration of multiple types of information

in order to better characterize the subsurface. In hydrogeology and geophysics, this

quantitative integration requires advances in both disciplines, as well as a framework

for this collaboration. The objective of this dissertation is to identify and refine a com-

putational framework that enables and encourages sustained cross-disciplinary com-

munication, which is a necessary step in integrated geophysical simulation research.
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Preface

The research for this dissertation was completed while studying at the University of

British Columbia. This research has resulted in three peer reviewed publications, three

expanded conference abstracts, and several auxiliary works. The main focus of my the-

sis is on a framework for geophysical simulations and inversions that increases quan-

titative geoscience communication. In 2016, Dr. Oldenburg, Dr. Pidlisecky, Lindsey

Heagy and I organized an international conference around this work that was spon-

sored by the Banff International Research Station; excerpts from the introduction of

my thesis were used in the conference proposal.

Chapter 2 presents a framework for simulation and parameter estimation for geo-

physical applications. An earlier version of which was published in Cockett et al.

(2015c), and ideas from this chapter also have been presented at several international

conferences (cf. Cockett et al. (2014b, 2015b,a)).

Chapter 3 presents a computationally scalable algorithm for solving inverse prob-

lems for hydraulic parameters in vadose zone flow using the Richards equation. This

work has been submitted for peer review and the preprint is available on arXiv (Cockett

et al., 2017); preliminary versions of this research were presented at two conferences

(Cockett and Haber, 2013b,a).

Chapter 4 involves several numerical examples, which were inspired by work from
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my undergraduate thesis, of which two papers were published during the course of my

graduate research (Pidlisecky et al., 2013; Cockett and Pidlisecky, 2014). The forward

simulation framework for multi-parameter simulations and inversions in time-domain

physical problems used in this chapter was derived from collaborative work between

electromagnetics and vadose zone flow (Heagy et al., 2016). One of the numerical

examples in Chapter 4 has previously been published in (Cockett et al., 2017).

Two of the appendices contain supporting materials on finite volume and several

numerical examples and case studies. Appendix B on finite volume contains work and

figures that have been published in a computational tutorial on finite volume (Cockett

et al., 2016a). Additionally, much of this work is supported by course material and

instruction from Dr. Eldad Haber, Dr. Uri Ascher, and Dr. Chen Grief (Haber, 2015;

Ascher and Greif, 2011). Appendix C presents an adaptation of the forward simulation

framework published in Heagy et al. (2016) for the Richards equation. This appendix

also summarizes conclusions and insights from three extended conference abstracts on

electromagnetics and a publication on parametric geologic modelling (Heagy et al.,

2014; Kang et al., 2015a; Heagy et al., 2015c; Cockett et al., 2016b).

Throughout the course of my graduate research, I have started and contributed

to several open source software projects to support, test, and validate the geophys-

ical simulation and inversion framework that is the main focus of my thesis. My

main focus with this software was on inheritance, composition, terminology, and the

interfaces between simulation and inversion components – the elements that define

the framework. This is demonstrated by my personal contribution of 267,614 lines

of code over the last five years, which have been reduced over 4.5 fold to 59,111

lines of code while increasing possibilities and geophysical applications. For an up-

to-date, detailed analysis on code contribution and attribution over time, please see:
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https://www.openhub.net/p/simpeg-geophysics. This is perhaps the most salient dis-

tinguishment between the focus on framework development as opposed to a script

or executable that is aimed at a specific type of geophysical inversion. The major

software packages that have been created are: (a) SimPEG, a framework for simula-

tion and parameter estimation in geophysics (https://github.com/simpeg/simpeg); (b)

discretize, a finite volume package for simulation in the context of inverse prob-

lems (https://github.com/simpeg/discretize); and (c) pymatsolver, a common inter-

face to several matrix solvers and packages (https://github.com/rowanc1/pymatsolver).

These projects have seen significant investment from my colleagues in testing, ap-

plying, and expanding the capabilities of the framework to other geophysical appli-

cations. This open, collaborative work has involved colleagues across industry, gov-

ernment, and six universities. Currently SIMPEG includes methods for: vadose zone

flow (Cockett et al., 2017); direct current resistivity and induced polarization (Kang

and Oldenburg, 2016); time-domain and frequency-domain electromagnetics (Heagy

et al., 2016, 2017); magnetotellurics (Rosenkjaer et al., 2016); magnetics and grav-

ity (Miller et al., 2017); and several examples of other inverse problems (Kang et al.,

2017b). All software has been released under the permissive MIT license, to encourage

reuse, adaptation, and sustained contribution to these ideas.
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Chapter 1

Introduction

1.1 Research context

One of the goals of the applied geosciences is to gain an understanding of subsurface

structures and processes. These understandings are often used to make predictions

and decisions associated with commercial and environmental challenges, including

contaminant delineation, resource exploration, reservoir optimization, and watershed

characterization. The accuracy of these predictions can have far-reaching economic

and environmental implications. There are many disciplines and skills that are involved

in providing predictions, and increasingly these disciplines must collaborate and inte-

grate their domain-specific knowledge. In a managed aquifer recharge project, for

example, the goal is to infiltrate water into the subsurface for storage and subsequent

recovery. Throughout the lifetime of the project, monitoring and management of the

infiltration site is necessary (e.g. Racz et al. (2011); Daily et al. (1992); Park (1998)).

Such projects require input from geology, hydrology, and geophysics in order to map

the hydrostratigraphy, collect and interpret time-lapse geophysical measurements, and
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integrate all results to make predictions and decisions about fluid movement at the site.

The quantitative integration of the geosciences is far from trivial as each discipline has

differing descriptive terminology, as well as software tools that are domain specific

with limited interoperability.

In the following two subsections, I will independently introduce two disciplines

within applied geoscience: (a) geophysical inversions, and (b) hydrogeophysics in the

vadose zone. The current state of these disciplines gives context to the work that fol-

lows and motivates research into a computational framework that improves the quanti-

tative communication between methodologies and researchers. The subsequent section

expands on these ideas and identifies a significant computational challenge of hydro-

geophysics inversions in the vadose zone.

1.1.1 Geophysical inverse problems

Geophysical methods involve making measurements at or above the earth’s surface,

or in boreholes. The data acquired with these methods are then used to create mod-

els of the subsurface; this is similar to non-invasive medical imaging, but the spatial

and temporal scales are typically much larger. The models, which can be 1D, 2D, or

3D distributions of various physical properties, are used for monitoring and extracting

information about fluid flow and subsurface structures. The physical properties are

linked to the data through various partial differential equations. The task of generat-

ing a quantitative understanding of the data requires the ability to carry out forward

simulations of these equations and, in many situations, inverting the data to estimate

a static or time-lapse model of the subsurface. Forward simulations use the physics

of the underlying measurement approach to simulate the response of a given distribu-

tion of physical properties. Inversion is a mathematical, algorithmic, and occasionally
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heuristic process that constructs a model consistent with the field measurements and a

priori geologic, geophysical, and hydrologic information.

Many of these geophysical methods (e.g. electromagnetics, magnetotellurics, grav-

ity, direct current resistivity) have mature solutions for both simulation and inversion

in three dimensions and through time (Oldenburg, 2016). There is, of course, con-

tinued research into improving computational efficiency for large-scale geophysical

surveys (cf. Haber and Schwarzbach (2014); Yang et al. (2014); Haber and Heldmann

(2007)). In parallel to this effort, there is ongoing work to integrate these geophysical

methodologies to create more informed interpretations of the subsurface from multi-

ple data types and surveys (e.g. Devriese et al. (2017); Kang et al. (2017a); Fournier

et al. (2017)). This research trend is true in exploration geophysics as well as in cross-

disciplinary fields such as hydrogeophysics where hydrologic simulations and geo-

physical simulations can be combined to better inform predictions about groundwater

flow.

The development of new methodologies to address the evolving challenges in

quantitative geoscience integration will build upon and extend standard practices. These

extensions and integrations will require experimentation with, and recombination of,

existing techniques. This presupposes that researchers have access to consistent, well-

tested tools that can be extended, adapted, and combined. One of the main goals of

my thesis is to organize the components of geophysical simulations and inverse prob-

lems into a comprehensive, modular framework in order to support this combinatorial

experimentation and exploration.
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1.1.2 Hydrogeophysics in the vadose zone

The majority of groundwater recharge is derived through water that percolates through

the vadose zone, the region between the earth’s surface and the fully saturated zone.

As such, studying the processes that occur in the vadose zone is of critical importance

for understanding our groundwater resources. Much attention has been given to mon-

itoring, describing and predicting processes that occur in this region of the earth. Tra-

ditionally, monitoring has been conducted by taking point-measurements of saturation

or pressure, or laboratory measurements of soil hydraulic properties. More recently,

geophysical methods are being used in conjunction with hydrologic data to create more

informed models of and predictions about the subsurface (Linde and Doetsch, 2016).

The advantages of employing geophysics to hydrogeology problems are numerous;

geophysical methods allow data to be gathered remotely, and the data can then be used

to create an image of a distributed physical property of interest (e.g. electrical conduc-

tivity) in the subsurface. However, the geophysical problem is inherently non-unique

and when viewed independently, images produced by a geophysical inversion often

lack the detail necessary to make informed hydrogeologic predictions. Some level of

prediction can be offered by hydrogeologic simulations within the structural geologic

context; however, these simulations are difficult to verify due to lack of constraining

hydrologic data. Taken separately, each methodology involved in this monitoring chal-

lenge yields distinct interpretations and predictions that are often dissonant or actually

conflicting.

Fluid flow in the vadose zone is described by the Richards equation and is pa-

rameterized by hydraulic conductivity, which is a nonlinear function of pressure head.

Hydraulic conductivity defines how fluids move in the subsurface, and is an impor-
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tant physical property to estimate for accurate predictions (Pollock and Cirpka, 2012;

Šimunek et al., 2012). It is not possible to directly image hydraulic conductivity with

geophysical data, however, geophysical electromagnetic methods are sensitive to bulk

electrical conductivity, which changes significantly depending on the saturating fluid

(e.g. gas or water) (Archie, 1942; Liang et al., 2012; Mendelson and Cohen, 1982).

Changes in saturation over time, as fluids move, can be related to changes in electrical

properties, and can be observed by electromagnetic geophysical methods. Knowing

where and how the fluids move can subsequently be related to hydraulic conductiv-

ity (or other hydraulic properties). This technique has been used to estimate hydraulic

properties directly from geophysical data. For example, in Binley et al. (2002), a cross-

well tomography experiment was conducted using radar and direct current resistivity

methods. The movement of a vadose zone tracer was tracked and a single parameter

was estimated using the Richards equation, through trial and error, for homogeneous

hydraulic conductivity. Both, the quality, and the spatial and temporal density of geo-

physical data available for monitoring vadose zone processes will continue to prolifer-

ate (e.g. Pidlisecky et al. (2013)). The increased data density and quality opens up the

possibility to estimate many more distributed hydraulic parameters.

Time-lapse estimation problem presents a significant conceptual and computa-

tional challenge (Pollock and Cirpka, 2012; Haber and Gazit, 2013; Towara et al.,

2015; Linde and Doetsch, 2016). It requires large-scale, time-lapse hydrogeologic

simulations that must be efficiently solved and then integrated with geophysical meth-

ods. This multiphysics integration of geophysical and hydrologic simulation can be

completed in a variety of ways. For example, this integration can be through direct

coupling of the simulations or through qualitative observations and uncoupled work-

flows. Hinnell et al. (2010) presents uncoupled integrations as: (a) using the geophys-
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ical data to estimate a physical property, such as electrical conductivity; (b) using an

empirical relation, such as Archie’s equation (eq. 4.1), to transform the geophysical

estimate into a hydrological parameter, such as water content; and (c) using hydrolog-

ical estimates to help inform or test a hydrogeologic simulation. A coupled inversion

formulates the entire process as a single forward model and uses stochastic or de-

terministic parameter estimation to directly update the hydrogeologic and empirical

parameters (Finsterle and Kowalsky, 2008; Ferré et al., 2009). Increasingly, there are

instances of these sorts of collaborations and studies in near surface hydrogeophysics

(cf. Linde and Doetsch (2016) and references within). The integration of geophys-

ical and hydrologic data increases the scale of simulations and inversions that must

be considered – hundreds of thousands to millions of hydrologic parameters must be

estimated. Currently, this is not computationally feasible for large 3D inversions of

vadose zone parameters using the Richards equation. For example, the relatively few

parameters that can be estimated by stochastic inversions may not be sufficient for

3D inversions (Linde and Doetsch, 2016). Alternatively, deterministic inversions can

be used, but will need to draw on improvements across the field of geophysical in-

verse problems. For example, regularization techniques developed in other areas of

exploration geophysics (e.g. Paasche and Tronicke (2007); Sun et al. (2012)), have po-

tential to be helpful in introducing known parameter distributions into a vadose zone

inversion. In Hinnell et al. (2010), the authors conclude that, “the coupled approach

[for hydrogeophysics] requires that the hydrologic and geophysical models be merged,

[which] forces the hydrologist and the geophysicist to formulate a consistent frame-

work.” This consistent framework was identified as “the primary limit to the routine

implementation of coupled inversion[s]. The formulation of common solution grids,

time steps, and simulation accuracies requires an uncommon level of collaboration
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during scientific analysis.”

1.1.3 Research motivation

The quantitative integration of hydrology, geophysics, and geology remains an open

problem (Liu and Gupta, 2007; Ferré et al., 2009; Pollock and Cirpka, 2012; Knight

et al., 2013; Linde and Doetsch, 2016). This task is being worked on from many

different perspectives in various research communities, and much progress has been

made in case studies, new algorithms, and novel integrations. The complexity of this

integration “intertwines various disciplines/subjects including geophysics, hydrology,

petrophysics, geostatistics, [and] inverse theory” (Knight et al., 2013). Although each

subdiscipline (e.g. flow modelling, electromagnetic simulation) invokes many of the

same concepts and numerical pieces for solving simulation and inversion problems, the

approaches developed and applied are not easily shared between subdisciplines. This

is due to differing terminology, organization of methodologies, differing data densi-

ties and sensitivities, model conceptualizations, as well as software implementations.

For example, in geophysics a model is often taken to be a volumetric distribution of

physical properties (e.g. Oldenburg and Li (2005)); in geology a model is often more

qualitative, represented by a sketch, description, 3D surfaces, or a cross section that

opaquely embeds knowledge about geologic processes (e.g. Harder et al. (2009); Por-

wal and Kreuzer (2010)); in hydrology a model often refers to the representation of a

physical simulation or empirical equation, frequently containing simplifying assump-

tions of homogeneity or dimensionality (cf. Devi et al. (2015)). As another example,

in hydrogeology data is often collected as high precision point measurements with low

spatial and/or temporal coverage; in electromagnetic geophysics, however, physical

property recoveries are often less precise and are averaged over a larger spatial scale.
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The inclusion of relevant information from one subdiscipline into another is diffi-

cult due to these differences in terminology, knowledge representation (e.g. quantita-

tive or qualitative), knowledge mapping (e.g. through empirical or structural relations),

model conceptualization (e.g. volumetric or surfaces or parametric), data sensitivi-

ties (e.g. point or bulk measurements), and simplifying or implicit assumptions (e.g.

one dimensional or homogeneous). These disconnects are exceptionally apparent in

software implementations, even though software is precisely where quantitative inte-

gration must occur! Software is often developed ad hoc for specific outcomes, and

the algorithmic components, which are conceptually generic and could be shared with

others, are deeply embedded and not easily transferred to other applications. Within

a given subdiscipline this can create challenges, as the system under consideration

can potentially embed hard-coded, tacit assumptions. Furthermore, this lack of trans-

portability and interoperability severely hinders the advancement of novel geophysical

applications since geoscientists in different subgroups often find themselves having to

develop a complete software solution from scratch prior to investigating their scientific

questions of interest. Overcoming these bottlenecks, and establishing a simulation and

inversion framework that works across many subdisciplines of (hydro)geophysics, is

the overarching goal of this thesis.

Based on the current state of the geoscience inversion and hydrogeophysics com-

munity and the observations outlined above, I have arranged this thesis to address two

research topics:

1. the development of an extensible framework for geophysical inversions, and

2. formulation of the three dimensional Richards equation inversion for computa-

tional scalability.
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The overarching goal is to promote both quantitative integration and collaboration be-

tween geoscience disciplines and communities. Interdisciplinary integration requires

dissemination, reproducibility, accessibility, and collaboration; as such these are cru-

cial to my work and demonstrated throughout the following thesis.

1.2 A framework for geophysical inversions

Geophysical inversions are the mathematical process of creating subsurface models to

fit measured data and geophysical simulations. The language, workflows, and resulting

software implementations of geoscience inversions vary across disciplines. These in-

consistencies are among the large barriers to sustained cross-disciplinary integrations.

One research approach to addressing these interdisciplinary barriers is the develop-

ment of a framework that organizes, synthesizes and abstracts diverse methodologies.

A framework should (a) serve as a means of organizing an approach to simulation and

inverse problems, (b) facilitate quantitative communication between researchers and

geophysics methodologies, and (c) act as a blueprint for both ideation and software

implementations. The disciplines and methodologies that have been used to inform

the research of this framework include: vadose zone flow using the Richards equation,

direct current resistivity, time and frequency domain electromagnetics, magnetotel-

lurics, potential fields including gravity and magnetics, and using geologic parame-

terizations to inform model conceptualization. Oldenburg (2016) noted that many of

the geophysical inversion techniques can now be completed in three dimensions us-

ing computationally efficient inversion algorithms. This is significant as geological

structures and processes such as electromagnetics and fluid flow often require treat-

ment in three dimensions. In both geophysics and hydrogeology the data is a field or a

flux, sampled at various locations, times, or frequencies. Additionally, point samples
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of physical properties or (hydro)stratigraphy can be inferred or tested from borehole

cores and geologically interpolated between wells and surface observations. These can

be included into the inverse problem formulation either implicitly through weightings

and reference models (cf. Williams (2008)) or more explicitly by forcings of geologic

priors (cf. Linde et al. (2015)). The geologic observations can also be modelled, for

example, using radial basis functions (RBFs), to implicitly reproduce the geologic con-

tacts and drillhole data; this results in geologically interpreted interpolations dividing

the subsurface into lithological units (Hillier et al., 2014).

Each geophysical technique is sensitive to different physical properties and/or dif-

ferent spatial scales. The differing sensitivities of these techniques motivates combi-

nation of methodologies to better understand and image the subsurface and time-lapse

processes. This is an active field of study, for example, (a) investigating cooperative

electromagnetics inversions in realistic settings by externally combining existing tools

through custom workflows (McMillan and Oldenburg, 2014), (b) joint inversion and

model fusion algorithms for direct current resistivity and borehole tomography (Haber

and Gazit, 2013), (c) integrating multiple types of airborne geophysical data into a

consistent geologic model for mineral exploration (Kang et al., 2017a; Fournier et al.,

2017; Devriese et al., 2017), and (d) combining one dimensional vadose zone flow and

direct current resistivity to invert for hydrological parameters (Hinnell et al., 2010).

Many of these studies rely on externally integrating existing software tools through

purpose-built scripts and workflows; limiting the transferability to other disciplines.

However, recent work has seen an increased focus by the geophysical community on

a framework approach that targets multiple geophysical and hydrogeologic method-

ologies (e.g. JInv (Ruthotto et al., 2016) and PyGIMLi (Rücker et al., 2017)). In

many electromagnetic geophysical applications, for example, a common model for
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electrical conductivity can be produced through cycling a common model through the

relevant problems until a sufficient misfit is achieved. In hydrogeophysics, however,

the model from a geophysical simulation is the data for a hydrogeologic simulation.

As such, for a deterministic large-scale inversion the sensitivity from one problem is

empirically coupled to another problem and must be efficiently calculated. In hydro-

geophysics, coupled hydrologic and geophysical interpretations are moving into three

dimensions, and standard probabilistic and finite difference techniques are becoming

“computationally infeasible” (Linde and Doetsch, 2016). The coupling of these meth-

ods into a computationally efficient inversion requires attention to the scalability of

all individual approaches as well as exposing the geophysical inversions effectively

for hydrogeologic parameter estimation. In order to support the custom parameteri-

zations, couplings, and integrations that are necessary for a new application, a gen-

eral framework must provide combinatorial building blocks that are independently

accessible and extensible, while maintaining computational efficiencies. The PEST

framework for model independent parameter estimation and uncertainty analysis is a

concrete example of where parts of this have been done with success (Doherty, 2004).

The software is widely cited in academia (> 2K citations) especially in hydrology and

hydrogeophysics, and is heavily used in industry. The advantage of being model in-

dependent has given this technique wide application due to the flexibility to adapt to

new scientific questions. However, this also comes at quite a cost because the structure

of the simulation and modelling cannot be used to the advantage of the algorithm. As

with vadose zone flow or electromagnetics, when moving to three dimensions there

may be hundreds of thousands to millions of parameters to estimate. Not taking the

structure of the problem into account severely limits types and size of problems that

can be considered. In the context of geophysical simulations and inversions there are
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two significant challenges/opportunities for such a framework:

1. to organize the components of geophysical simulations and inversions to and

expose explicit interfaces to components to interdisciplinary manipulation in a

combinatorial manner; and

2. maintaining computational scalability, especially with respect to efficient calcu-

lation of sensitivities.

Adapting interdisciplinary methodologies to formalize geophysical simulations and

inversions inherently requires that a diverse suite of methods and applications be con-

sidered across geophysics, hydrogeology, and geology. This process will take the form

of deriving, from the existing body of literature, a consistent conceptual and compu-

tational framework, which supports reproducible inversion workflows. By formalize,

I do not mean mathematically, rather taking practices of ontology and computational

framework development in biology and other more mature interdisciplinary fields and

applying them to geophysical inversions. The ontology literature provides context, al-

beit abstract, for the approach that I have used to formalize the research around this

interdisciplinary problem and is briefly detailed in Appendix A.

1.2.1 Take home points

Sustained, reproducible integration of geophysical simulations and inversions requires

that methodologies be accessible, consistent, numerically documented, interoperable,

and extensible. This can be enabled by a comprehensive framework that is validated

and rigorously tested against reality and leading edge research. To do this, research is

required to:
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• identify the composable components of geophysical inversions and simulations,

as well as the interfaces between the components;

• abstract commonalities between methodologies to a consistent, supporting sub-

set; and

• capture geoscience inversion heuristics in a reproducible manner.

The output of this research will be a computational framework that is numerically

tested and demonstrates the capability to support existing and future research direc-

tions. Ideally this framework will catalyze and accelerate interdisciplinary collabora-

tions.

1.3 Application to vadose zone parameter estimation

The development of a geophysical framework requires considering a number of dis-

ciplines and geophysical problems to ensure generality as well as extensibility. I am

working with collaborators in many of these geophysical methods (electromagnetics,

direct current resistivity, magnetotellurics, magnetics, gravity) and am ensuring that

the framework that I am researching supports these applications. However, the goal is

also to have the framework work outside of geophysics and most notably in hydroge-

ology, as such, I have chosen vadose zone fluid flow as a model problem.

Fluid flow in the vadose zone is described by the Richards equation (eq 3.1) and

parameterized by hydraulic conductivity, which is a nonlinear function of pressure

head (Richards, 1931; Celia et al., 1990). Investigations in the vadose zone typically

require identification of distributed hydraulic properties. This is increasingly being

done through an inversion approach, which is also known as data assimilation, model

calibration, or history matching (Liu and Gupta, 2007). These methods use changes
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in water content or pressure head to infer hydraulic parameters (Binley et al., 2002;

Deiana et al., 2007; Hinnell et al., 2010). Hydrogeophysics allows many more proxy

measurements, such as direct current resistivity data, to be taken to help characterize

these sites spatially, as well as through time. As such, the number of distributed hy-

draulic parameters to be estimated in a Richards equation inversion will continue to

grow. Conceptually this integration is framed as taking the output of a (time-lapse)

direct current resistivity inversion (cf. Pidlisecky et al. (2013)), and using this estimate

of electrical conductivity as a proxy for water content data in hydraulic parameter

estimation. The proxy data can be directly incorporated through an empirical relation

(e.g. Archie (1942)) or time-lapse estimations can be structurally incorporated through

some sort of regularization technique (Haber and Gazit, 2013; Haber and Oldenburg,

1997; Hinnell et al., 2010). Previous studies have either estimated homogeneous soil

profiles estimating less than five parameters (e.g. Binley et al. (2002); Deiana et al.

(2007)) or heterogeneous soil profiles, estimating less than thousands of parameters

(cf. Irving and Singha (2010); Jardani et al. (2013); Orgogozo et al. (2014)). Parame-

ter estimation is currently completed by trial and error or using stochastic techniques,

neither of which scale to the scenario that requires estimation of hundreds of thousands

to millions of parameters (Linde and Doetsch, 2016). This limit in scalability, espe-

cially in the context of hydrogeophysics has been explicitly noted in the literature (cf.

Binley et al. (2002); Deiana et al. (2007); Towara et al. (2015)). To our knowledge,

a large scale inversion in three dimensions for distributed hydraulic parameters using

the Richards equation has not yet been completed in the literature due to these issues

with computational scalability.

There has been much research into the scalability of the inverse problem in geo-

physical applications (e.g. electromagnetics) that allow the calculation of an optimiza-
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tion step in the inversion without explicitly calculating or storing the sensitivity matrix

(cf. Haber et al. (2000)). This is extremely important in large problems as the com-

puter memory available to store this large, dense matrix can often be a limitation. For

example, although there have been significant advances for massively parallel forward

simulations of the Richards equation (cf. Orgogozo et al. (2014)), the computational

“memory may simply not be large enough” to run the inverse problem using standard

automatic differentiation (Towara et al., 2015). Previous work uses either automatic

differentiation or finite difference in order to explicitly compute the sensitivity matrix

(e.g. PEST) (Finsterle and Zhang, 2011; Bitterlich and Knabner, 2002; Towara et al.,

2015). Finite difference is computationally slower and can generate inaccuracies in

the sensitivity computation and tarry convergence of the optimization algorithm. With

regard to implicit sensitivity calculations, there is an opportunity to apply some of

the learnings from the geophysical inversion literature to this hydrogeologic problem.

Note that the implicit sensitivity calculation is necessary in any gradient based tech-

nique as well as modern stochastic methods (Bui-Thanh and Ghattas, 2015).

The application of the implicit sensitivity calculation to the Richards equation,

however, is not straightforward. Hydraulic conductivity is the function we are invert-

ing for - it is empirically determined and depends on pressure head; pressure head

is the field that is calculated using the Richards equation. This nonlinear coupling

requires iterative optimization methods in the forward simulation between each time

step (e.g. Picard or Newton). This makes the implicit calculation of the effect of the

sensitivity on a vector rather involved and intricate. Furthermore, the nonlinear re-

lationship of hydraulic conductivity is empirically determined and depending on the

relation used could involve the estimation of up to ten spatially-distributed parameters

from a finite dataset. The implicit use of the sensitivity matrix should have the ability

15



to calculate the sensitivity to any of these model parameters; however, any inversion

algorithm must be tested as to the limits of estimating all distributed parameters at

once. One goal of the work in this thesis is to tackle the sensitivity calculation implic-

itly. This would further allow for exploration into different inversion methodologies

and parameterizations of the empirical relationships. By not storing the sensitivity, and

instead computing its effect on a vector, the size of the problem that we can invert will

become much larger. This will allow large 3D hydraulic parameter inversions using

the Richards equation to be run on modest computational resources. However, directly

jumping into a 3D inversion for heterogeneous hydraulic properties, with many param-

eters per cell in the isotropic case, is highly non-unique. I will explore some inversion

schemes, model conceptualizations, and ways to explore interfacing to a priori infor-

mation. Unsaturated hydraulic conductivity as well as the water retention curve are

both empirically described functions. The parameterization and estimation of these

functions in the context of collecting proxy saturation data will be explored in a num-

ber of numerical experiments.

1.3.1 Take home points

With advances in the spatial and temporal density of geophysical data collection, time-

lapse water content estimates can be made with increasing accuracy. These proxy time-

lapse measurements can be used to estimate hydraulic properties from non-invasive

geophysical methods. This is increasingly being completed in field studies, however,

conceptual and computational simplifications are consistently made. Part of the bot-

tleneck is the scalability of current inverse methods applied to the Richards equation.

Research is required to:

• reframe the Richards equation inversion for computational scalability when mov-
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ing to large 3D distributed parameter estimation,

• ensure that any parameter in the empirically determined hydraulic conductivity

function and water retention curve can be estimated, and

• investigate and explore the effectiveness of distributed joint inversions for hy-

draulic parameters from a water content dataset.

This research will inform the conceptual framework and contribute an implicit sen-

sitivity calculation for the Richards equation inverse problem that can be coupled to

other geophysical methods.

1.4 Thesis outline

The content of this thesis is divided into three chapters and three appendices; these are

shown visually in Figure 1.1. Each chapter and appendix provides a stand alone intro-

duction and conclusion to the specific topic under consideration. Chapter 2 presents a

comprehensive framework for geophysical simulations and inversions. This includes

an overview of current research and outlines a modular, object-oriented approach for

structuring deterministic, large-scale inversion methodology in geophysics that has

application to hydrogeology and can incorporate and interface to geologic informa-

tion. A direct current resistivity forward simulation and inversion are used through-

out this chapter as an example. A brief comment on the approach used to research

this computational framework is included in Appendix A. An overview of finite vol-

ume discretization techniques, which are heavily used throughout this thesis, has been

included as Appendix B. In this appendix, I examine and comment on the organiza-

tion, structure, and formulation of three different classes of mesh: (a) tensor product

orthogonal mesh, including formulation in cylindrical coordinates; (b) quadtree and
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octree meshes; and (c) logically rectangular, non-orthogonal meshes. These meshes

in 1D, 2D, 3D, and 4D are used throughout the thesis as well as extensions to my

work. The software used to inform my work and refine my interdisciplinary approach

to simulation and parameter estimation in geophysics is open source and available un-

der the permissive MIT license (https://github.com/simpeg/simpeg). This repository

includes forward and inverse software by me and my colleagues of the framework

for vadose zone flow, time and frequency domain electromagnetics, direct current

resistivity, induced polarization, magnetotellurics, magnetics, gravity, and a number

of example linear inverse problems; these are described in the online documentation

(http://docs.simpeg.xyz).

Chapter 3 focuses on the Richards equation, which is the partial differential equa-

tion that describes vadose zone flow. Using the previously developed framework and

finite volume tools tailored specifically for inverse problems (Appendix B), I have

reframed the Richards equation to be scalable with respect to large-scale inverse prob-

lems. The majority of this work is focused on enabling access to the sensitivity im-

plicitly, through multiplication with a vector. The validity of this technique as well as

comments on numerical performance are provided. The scalability of the algorithm

developed is shown with comparison to other techniques. This work has built upon as

well as informed the research into the organization of the framework. The Richards

equation is more complex than many other geophysical methods analyzed because of

the nonlinear, time dependent forward problem and multiple empirical relationships

that may or may not require estimation.

Chapter 4 explores the estimation of hydraulic parameters from water content data.

This is motivated by the hydrogeophysical problem where there is an availability of

proxy water content data. This chapter explores a set of empirical relations that in-
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Figure 1.1: Outline of the thesis chapters: (2) the simulation and inversion frame-
work; (3) the sensitivity calculation in Richards equation; (4) applications
and exploration into vadose zone inversions; (A1) finite volume techniques
on a variety of meshes; and (A2) interfaces to geologic knowledge through
parameterizations and a forward simulation framework and extensions to
the work presented.

form both the hydraulic conductivity function and the water retention curve. A joint

inversion is formulated to estimate for five spatially distributed hydraulic parameters.

The number of spatially distributed unknowns are experimented with, and the response

of the inversion algorithm is tested under various levels of a priori knowledge. The

efficacy of these approaches is commented upon, which may help inform laboratory

or field based experiments of this kind. Finally, a three dimensional inversion is com-

pleted using the Richards equation. Due to computational scalability issues detailed

in Chapter 3, an inversion for distributed hydraulic parameters at this scale is com-

putationally infeasible with standard techniques (Linde and Doetsch, 2016). These

limitations are overcome by both the framework introduced in Chapter 2 and the im-

plicit sensitivity calculation that allows large-scale parameter estimation problems to

be tackled (Chapter 3). Other examples, extensions, and applications of the framework

including other geophysical methodologies, case studies, and geoscience integrations

are included in Appendix C; much of this work is collaborative in nature and focuses
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on the parameterization of the forward problem. As the focus of this thesis is on the

geophysical inversion framework, I have distilled my observations from these case

studies and provided these learnings in a general form.

Finally, Chapter 5 provides a brief discussion on the thesis contributions and sum-

marizes some opportunities for future research and collaborations. These research

areas may seem disparate, but collectively they are united by a common theme of

addressing the complexities of bringing together the disciplines of geophysics, hydrol-

ogy, geology, and inverse theory in a computationally tractable manner that is accessi-

ble and extensible by other researchers.
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Chapter 2

Simulation and inversion framework

2.1 Introduction and motivation

Geophysical surveys can be used to obtain information about the subsurface, as the

measured responses depend on the physical properties and contrasts in the earth. In-

versions provide a mathematical framework for constructing physical property models

consistent with the data collected by these surveys. The data collected are finite in

number, while the physical property distribution of the earth is continuous. Thus, in-

verting for a physical property model from geophysical data is an ill-posed problem

because no unique solution explains the data. Furthermore, the data may be contam-

inated with noise. Therefore, the goal of a deterministic inversion is not only to find

a model consistent with the data, but also to find the ‘best’ model that is consistent

with the data1. The definition of ‘best’ requires the incorporation of assumptions and

a priori information, often in the form of an understanding of the particular geologic

1Alternatively, the inverse problem can be formulated in a probabilistic framework, for example:
(Tarantola, 2005; Tarantola and Valette, 1982). In this thesis, we will focus our attention on the deter-
ministic approach.
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setting or structures (Constable et al., 1987; Oldenburg and Li, 2005; Lelièvre et al.,

2009). Solving the inverse problem involves many moving pieces that must work to-

gether, including physical simulations, optimization, linear algebra, and incorporation

of geology. Deterministic geophysical inversions have been extensively studied and

many components and methodologies have become standard practice. With increases

in computational power and instrumentation quality, there is a greater drive to extract

more information from geophysical data. Additionally, geophysical surveys are being

applied in progressively more challenging environments. As a result, the geosciences

are moving towards the integration of geological, geophysical, and hydrological in-

formation to better characterize the subsurface (e.g. Haber and Oldenburg (1997);

Doetsch et al. (2010); Gao et al. (2012)). This integration is a scientifically and prac-

tically challenging task (Li and Oldenburg, 2000a; Lelièvre et al., 2009). These chal-

lenges, compounded with inconsistencies between different data sets, often make the

integration and implementation complicated and/or non-reproducible. The develop-

ment of new methodologies to address these challenges will build upon, as well as

augment, standard practices; this presupposes that researchers have access to consis-

tent, well-tested tools that can be extended, adapted, and combined.

There are many proprietary codes available that focus on efficient algorithms and

are optimized for a specific geophysical application (e.g. Kelbert et al. (2014); Li and

Key (2007); Li and Oldenburg (1996, 1998)). These packages are effective for their

intended application; for example, in a domain-specific, large-scale geophysical inver-

sion or a tailored industry workflow. However, many of these packages are ‘black-box’

algorithms; that is, they cannot easily be interrogated or extended. As researchers,

we require the ability to interrogate and extend ideas; this must be afforded by the

tools that we use. Accessibility and extensibility are the primary motivators for this
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work. Other disciplines have approached the development of these tools through open

source initiatives, using interpreted languages such as Python (for example, Astropy

in astronomy (Astropy Collaboration et al., 2013) and SciPy in numerical computing

(Jones et al., 2001)). Interpreted languages facilitate interactive development using

scripting, visualization, testing, and interoperability with code in compiled languages

and existing libraries. Furthermore, many open source initiatives have led to com-

munities with hundreds of researchers contributing and collaborating by using social

coding platforms, such as GitHub (https://github.com). Initiatives also exist in the geo-

physical forward and inverse modeling community, which target specific geophysical

applications (cf. Hansen et al. (2013); Hewett et al. (2013); Uieda et al. (2014); Kel-

bert et al. (2014); Harbaugh (2005)). Recent work has seen an increased focus by

the geophysical community on a framework approach that targets multiple geophys-

ical/hydrogeologic methods (e.g. JInv (Ruthotto et al., 2016) and PyGIMLi (Rücker

et al., 2017)). We are interested in creating a community around geophysical sim-

ulations and gradient-based inversions. To create a foundation on which to build a

community, we require a comprehensive framework that is applicable across domains

and upon which researchers can readily develop their own tools and methodologies.

To support these goals, this framework must be modular and its implementation must

be easily extensible by researchers.

2.1.1 Attribution and dissemination

The goal of this chapter is to present a comprehensive framework for simulation and

gradient-based parameter estimation in geophysics. Core ideas from a variety of geo-

physical inverse problems have been distilled to create this framework. We also pro-

vide an open source library, written in Python, called SIMPEG (Simulation and Pa-
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rameter Estimation in Geophysics, http://github.com/simpeg/simpeg). Our implemen-

tation has core dependencies on SciPy, NumPy, and Matplotlib, which are standard

scientific computing packages in Python (Jones et al., 2001; Van Rossum and Drake

Jr, 1995; Oliphant, 2007; Hunter, 2007). SIMPEG includes staggered grid, mimetic

finite volume discretizations on structured and semi-structured meshes. It interfaces to

standard numerical solver packages, convex optimization algorithms, model parame-

terizations, and visualization routines. We use Python’s object-oriented paradigm to

create modular code that is extensible through inheritance and subtype polymorphism.

SIMPEG follows a fully open source development paradigm (Feller and Fitzgerald,

2000) and uses the permissive MIT license. Throughout its development, we have

focused on modularity, usability, documentation, and extensive unit-testing (Wilson

et al., 2014). Please see the website (http://simpeg.xyz) for up-to-date code, examples,

and documentation of this package. In addition, there are many published use cases

across a variety of geophysical applications (Kang et al., 2014, 2015b,a; Kang and

Oldenburg, 2015; Heagy et al., 2014, 2015d). We hope that the organization, modu-

larity, minimal dependencies, documentation, and testing in SIMPEG will encourage

reproducible research, cooperation, and communication to help tackle some of the in-

herently multidisciplinary geophysical problems.

To guide the discussion, we start this chapter by outlining gradient-based inver-

sion methodology in Section 2.2. The inversion methodology directly motivates the

construction of the SIMPEG framework, terminology, and software implementation,

which we discuss in Section 2.3. We weave an example of Direct Current (DC) resis-

tivity throughout the discussion of the SIMPEG framework to provide context for the

choices made and highlight many of the features of SIMPEG.
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2.2 Inversion methodology

Geophysical inverse problems are motivated by the desire to extract information about

the earth from measured data. A typical geophysical datum can be written as:

Fi[m]+ εi = di, (2.1)

where F is a forward simulation operator that incorporates details of the relevant phys-

ical equations, sources, and survey design, m is a generic symbol for the inversion

model, εi is the noise that is often assumed to have known statistics, and di is the

observed datum. In a typical geophysical survey, we are provided with the data,

di, i = 1...N, and some estimate of their uncertainties. The goal is to recover the model,

m, which is often a physical property. The data provide only a finite number of inac-

curate constraints upon the sought model. Finding a model from the data alone is

an ill-posed problem since no unique model exists that explains the data. Additional

information must be included using prior information and assumptions (for example,

downhole property logs, structural orientation information, or known interfaces (Fulla-

gar et al., 2008; Li and Oldenburg, 2000a; Lelièvre et al., 2009)). This prior knowledge

is crucial if we are to obtain an appropriate representation of the earth and will be dis-

cussed in more detail in Section 2.2.1.

Defining and solving a well-posed inverse problem is a complex task that requires

many interacting components. It helps to view this task as a workflow in which vari-

ous elements are explicitly identified and integrated. Figure 2.1 outlines the inversion

methodology that consists of inputs, implementation, and evaluation. The inputs are

composed of: the geophysical data; the equations, which are a mathematical descrip-

tion of the governing physics; and, prior knowledge or assumptions about the setting.
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The implementation consists of two broad categories: the forward simulation and the

inversion. The forward simulation is the means by which we solve the governing equa-

tions, given a model, and the inversion components evaluate and update this model.

We are considering a gradient-based approach, which updates the model through an

optimization routine. The output of this implementation is a model, which, prior to

interpretation, must be evaluated. This requires considering, and often re-assessing,

the choices and assumptions made in both the input and the implementation stages.

In this chapter, our primary concern is the implementation component; that is, how

the forward simulation and inversion are carried out numerically. As a prelude to dis-

cussing how the SIMPEG software is implemented, we step through the elements in

Figure 2.1, considering a Tikhonov-style inversion.

2.2.1 Inputs

Three sources of input are required prior to performing an inversion: (1) the geophysi-

cal data and uncertainty estimates; (2) the governing equations that connect the sought

model with the observations; and (3) prior knowledge about the model and the context

of the problem.

Data and uncertainty estimates

At the heart of the inversion are the geophysical data that consist of measurements

over the earth. These data depend on the type of survey, the physical property distri-

bution, and the type and location of the measurements. The details about the survey

must also be known, such as the location, orientation, and waveform of a source and

which component of a particular wavefield is measured at a receiver. The data are

contaminated with additive noise, which can sometimes be estimated by taking mul-
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Figure 2.1: Inversion methodology. Including inputs, implementation, evalua-
tion and interpretation.

tiple realizations of the data. However, standard deviations of those realizations only

provide a lower bound for the noise. For the inverse problem, the uncertainty in the

data must include not only this additive noise, but also any discrepancy between the

true earth experiment and our mathematical representation of the data. Including these

aspects requires accounting for mis-location of receivers and sources, poor control of

the transmitter waveform, electronic gains or filtering applied to signals entering the

receivers, incorrect dimensionality in our mathematical model (e.g. working in 2D

instead of 3D), neglect of physics in our mathematical equations by introducing as-

sumptions (e.g. using a straight ray tomography vs. a full waveform simulation in
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seismic), and discretization errors of our mathematical equations.

Governing equations

The governing equations provide the connection between the physical properties of

the subsurface and the data we observe. Most frequently, these are sets of partial

differential equations with specific boundary conditions. The governing equations,

with specified source terms, can be solved through numerical discretization using finite

volume, finite element, or integral equation techniques. Alternatively, they may also

be solved through evaluations of analytic functions. Whichever approach is taken, it is

crucial that there exists some way to simulate the data response given a model.

Prior knowledge

If one model acceptably fits the data, then infinitely many such models exist. Ad-

ditional information is therefore required to reduce non-uniqueness. This additional

information can be geologic information, petrophysical knowledge about the various

rock types, borehole logs, additional geophysical data sets, or inversion results. This

prior information can be used to construct reference models for the inversion and also

characterize features of the model, such as whether it is best described by a smooth

function or if it is discontinuous across interfaces. Physical property measurements

can be used to assign upper and lower bounds for a physical property model at points

in a volume or in various regions within our 3D volume. The various types of infor-

mation relevant to the geologic and geophysical questions that we must address must

be combined and translated into useful information for the inversion (Lelièvre et al.,

2009; Li et al., 2010).
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2.2.2 Implementation

In this section, we outline the components necessary to formulate a well-posed inverse

problem and solve it numerically. Two major abilities are critical to running the inver-

sion: (1) the ability to simulate data, and (2) the ability to assess and update the model

(Figure 2.1).

Forward simulation

The ability to carry out an inversion presupposes the ability to run a forward simulation

and create predicted data, given a physical property model. In forward simulation, we

wish to compute F [m] = dpred. The operator, F , simulates the specific measurements

taken in a geophysical survey, using the governing equations. The survey refers to all

details regarding the field experiment that we need to simulate the data. The forward

simulation of DC resistivity data requires knowledge of the topography, the resistivity

of the earth, and the survey details, including locations of the current and potential

electrodes, the source waveform, the units of the observations, and the polarity of

data (since interchanging negative and positive electrodes may sometimes occur in the

field). To complete the simulation, we need to solve our governing equations using

the physical property model, m, that is provided. In the DC resistivity experiment,

our partial differential equation, with supplied boundary conditions, is solved with an

appropriate numerical method; for example, finite volumes, finite elements, integral

equations, or semi-analytic methods for 1D problems. In any case, we must discretize

the earth onto an appropriate numerical forward simulation mesh, (meshF ). The size

of the cells will depend upon the structure of the physical property model, topography,

and the distance between sources and receivers. Cells in meshF must be small enough,

and the domain large enough, to achieve sufficient numerical accuracy. Proper mesh
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design is crucial so that numerical modeling errors are below a prescribed threshold

value (cf. Haber (2015)).

In general, we can write our governing equations in the form of:

C(m,u) = 0, (2.2)

where m is the modeled physical property and u are the fields and/or fluxes. C is often

given by a partial differential equation or a set of partial differential equations. Infor-

mation about the sources and appropriate boundary conditions are included in C. This

system is solved for u and the predicted data are extracted from u via a projection (or

functional), dpred = P[u]. The ability to simulate the geophysical problem and generate

predicted data is a crucial building block. Accuracy and efficiency are essential, since

many forward problems must be evaluated when carrying out any inversion.

Inversion elements

In the inverse problem, we must first specify how we parameterize the earth model.

Finding a distributed physical property can be done by discretizing the 3D earth into

voxels, each of which has a constant, but unknown, value. It is convenient to refer

to the domain on which this model is discretized as the inversion mesh, meshI . The

choice of discretization involves an assessment of the expected dimensionality of the

earth model. If the physical property varies only with depth, then the cells in meshI

can be layers and a 1D inverse problem can be formulated. A more complex earth

may require 2D or 3D discretizations. The choice of discretization depends on both

the spatial distribution and resolution of the data and the expected complexity of the

geologic setting. We note that the inversion mesh has different design criteria and con-
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straints than the forward simulation mesh. For convenience, many inverse problems

have historically been solved with meshI = meshF so that only one discretization is

needed for the inversion. There is a growing body of work that investigates combina-

tions of inversion discretizations and forward modeling meshes that are geared towards

problem-specific formulations as well as efficiency in large-scale problems (Haber and

Schwarzbach, 2014; Yang et al., 2014; Haber and Heldmann, 2007). In any formula-

tion, there exists a mapping between meshI and meshF such that the parameterization

chosen can be used to simulate data in a forward simulation.

To formulate a mathematical statement of the inverse problem, there are two es-

sential elements:

1. data misfit: a metric that measures the misfit between the observed and predicted

data; and

2. regularization: a metric that is constructed to evaluate the model’s agreement

with assumptions and prior knowledge.

The data misfit requires an assessment of the error in each datum. These errors

result from anything that yields a discrepancy between the mathematical modeling and

the true value. It includes additive noise, errors in the description of survey parameters

(e.g. receiver locations, transmitter waveforms, etc.), incorrect choice of governing

equations, and numerical errors arising from the simulation technique. Clearly, quan-

tifying the noise for each datum poses a challenge.

The data misfit is a measure of how well the data predicted by a given model

reproduce the observed data. To assess goodness of fit, we select a norm that evaluates

the ‘size’ of the misfit. This metric must include an uncertainty estimate for each
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datum. Often, we assume that the data errors are Gaussian and uncorrelated and then

estimate the standard deviation for each datum. The most common norm, and one that

is compatible with Gaussian statistics, has the form:

φd(m) =
1
2
‖Wd(F [m]−dobs)‖2

2. (2.3)

Here, F [m] is a forward modeling that produces predicted data, dpred, as in equation:

2.1. Wd is a diagonal matrix whose elements are equal to Wdii = 1/εi, where εi is an

estimated standard deviation of the ith datum. It is important to think carefully when

assigning these estimates. A good option is to assign a εi = f loor+%|di|. Percentages

are generally required when there is a large dynamic range of the data. A percentage

alone can cause great difficulty for the inversion if a particular datum acquires a value

close to zero; therefore, we include a floor.

In addition to a metric that evaluates the size of the misfit, we also require a tol-

erance, φ∗d . We consider that models satisfying φd(m) ≤ φ∗d adequately fit the data

(Parker, 1994). If the data errors are Gaussian and we have assigned the correct stan-

dard deviations, then the expected value of φ∗d ≈ N, where N is the number of data.

Finding a model that has a misfit substantially lower than this will result in a solution

that has excessive and erroneous structure; that is, we are fitting the noise. Finding a

model that has a misfit substantially larger than this will yield a model that is missing

structure that could have been extracted from the data (see Oldenburg and Li (2005)

for a tutorial).

The choice of misfit in equation 2.3 is not the only possibility for a misfit measure.

If data errors are correlated, then Wd is the square root of the data covariance matrix

and it will have off-diagonal terms. Often useful in practice is recognizing if the noise
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statistics are non-Gaussian. Incorporating robust statistical measures, like lp norms

with p≈ 1, are useful for handling outliers (Ekblom, 1973; Farquharson, 1998).

The second essential inversion element is defining the regularization functional.

If there is one model that has a misfit equal to the desired tolerance, then there are

infinitely many other models which can fit to the same degree. The challenge is to

find the model that has both the desired characteristics and is compatible with a priori

information. A single model can be selected from an infinite ensemble by measuring

the length, or norm, of each model. Then the smallest, or sometimes largest, member

can be isolated. Our goal is to design a norm that embodies our prior knowledge and,

when minimized, yields a realistic candidate for the solution of our problem. The

norm can penalize variation from a reference model, spatial derivatives of the model,

or some combination of these. We denote this norm by φm and write it in a matrix

form, for example,

φm(m) =
1
2
‖Wm(m−mref)‖2

2. (2.4)

Wm is a matrix and mref is a reference model (which could be zero). The matrix Wm

can be a stacked combination of matrices weighted by α∗:

Wm = [αsI, αxW>x , αyW>y , αzW>
z ]
>. (2.5)

Here, Wm is a combination of smallness and first-order smoothness in the x, y, and z

directions. Each of the W matrices is, in fact, a discrete representation of an integral
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(cf. Oldenburg and Li (2005)).

∫
Ω

(
ws(m−mre f )

)2 dV (smallness),∫
Ω

(
wx

dm
dx

)2

dV (x-smoothness),

∫
Ω

(
wy

dm
dy

)2

dV (y-smoothness),

∫
Ω

(
wz

dm
dz

)2

dV (z-smoothness),

(2.6)

The final regularization, Wm, can be a weighted sum of these, with α∗ being applied

as scalars or diagonal matrices, with varying weights for each cell or cell face (cf. Old-

enburg and Li (2005); Haber (2015)). Additional weightings can also be incorporated

through Wm, such as depth weighting, which is important in potential field inversions

(such as magnetics and gravity), or sensitivity weightings to prevent model structure

from concentrating close to sources or receivers (Li and Oldenburg, 1996, 2000b). The

regularization functionals addressed provide constraints on the model in a weak form;

that is, a single number is used to characterize the entire model. Strong constraints that

work within each cell can often be provided in the form of upper and lower bounds;

these bounds will be incorporated in the following section. The l2 norms referred to

above are appropriate for many problems, however models norms, such as lp-norms,

total variation, minimum support stabilizing functionals, or rotated smoothness oper-

ators that favor different character and / or include additional information can also be

designed (cf. Oldenburg (1984); Oldenburg and Li (2005); Claerbout and Muir (1973);

Strong and Chan (2003); Zhdanov (2002); Li and Oldenburg (2000a)). For example:

∫
|wp(m−mre f )|pdV (weighted-lp norm) (2.7)
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The potential to have different norms tailored to a specific problem, with the additional

functionality of localized weightings and reference models, provides the user with

the capability of designing a regularization that favors a solution that is compatible

with existing knowledge about the model. This task is not trivial, requires careful

thought, and must often be re-evaluated and adjusted as the geophysicist iterates over

the inversion procedure (Figure 2.1).

Statement of the inverse problem

The purpose of this section is to pose our inverse problem in a mathematically precise

way and to provide a methodology by which a solution can be achieved. In the work

that follows, we outline a specific methodology that we will later demonstrate. We for-

mulate the inverse problem as a problem in optimization, where we define an objective

function, based on the data misfit and model regularization, and aim to find a model

which sufficiently minimizes it. Many variants of this formulation are possible.

At this stage of the workflow, we have on hand all of the necessary components for

formulating the inverse problem as an optimization problem. We have the capability

to forward model and generate predicted data, assess the data misfit using φd , and a

tolerance on the data misfit has already been specified. A regularization functional,

φm, and additional strong constraints on the model have been identified, such as upper

and lower bounds: mL
i ≤mi ≤mH

i . The sought model is one that minimizes φm and

also reduces the data misfit to some tolerance, φ∗d . However, a reduction in data misfit

requires that the model have increased structure, which typically is at odds with the

assumptions we impose in the construction of φm, meaning that the φd and φm are

antagonistic. To address this and still pose the inversion as an optimization problem,
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we design a composite objective function:

φ(m) = φd(m)+βφm(m), (2.8)

where β is a positive constant. It is often referred to as the trade-off parameter, re-

gression parameter, regularization parameter, or Tikhonov parameter (Tikhonov and

Arsenin, 1977). When β is very large, the minimization of φ(m) produces a model

that minimizes the regularization term and yields a large φd(m). Alternatively, when β

is very small, minimization of φ(m) produces a model that fits the data very well but

is contaminated with excessive structure so that φm(m) is large. The inverse problem

is posed as:

minimize
m

φ(m) = φd(m)+βφm(m)

s.t. φd ≤ φ
∗
d , mL

i ≤mi ≤mH
i .

(2.9)

Since the value of β is not known a priori, the above optimization problem can be

solved at many values of β to produce a trade-off, or Tikhonov, curve (cf. Parker

(1994); Hansen (1998)). An optimum value, β ∗, can be found so that minimizing

equation 2.8 with β ∗ produces a model with misfit φ∗d . The value of β ∗ can be found

via cooling techniques where the β is progressively reduced from some high value

and the process stopped when the tolerance is reached or by using two-stage methods

(cf. Parker (1977)). There are other strategies for selecting the trade-off parameter

including the L-curve technique (Hansen, 1992), which attempts to find the point of

greatest curvature in the Tikhonov curve and Generalized Cross Validation (Wahba,

1990; Golub et al., 1979; Haber and Oldenburg, 2000; Oldenburg and Li, 2005; Far-

quharson and Oldenburg, 2004).
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The optimization posed in equation 2.9 is almost always non-linear. It is linear

only in a special case, where the forward mapping is a linear functional of the model,

φm and φd are written as l2 norms, β is known, and there are no imposed bound con-

straints. This rarely happens in practice, requiring that iterative optimization methods

be employed to find a solution. Gradient-based methods are commonly used and we

refer the reader to Nocedal and Wright (1999) for background and introductions to the

relevant literature. For geophysical problems, Gauss-Newton techniques have proven

to be valuable and practical. For l2 norms, we write the objective function as:

φ(m) =
1
2
||Wd(F [m]−dobs)||22 +

1
2

β ||Wm(m−mref)||22. (2.10)

The gradient is given by:

g(m) = J[m]>W>
d Wd(F [m]−dobs)+βW>mWm(m−mref), (2.11)

where J[m] is the sensitivity or Jacobian. The components, J[m]i j, specify how the ith

datum changes with respect to the jth model parameter; these changes will be discussed

in more detail in the next section. At the kth iteration, beginning with a model, mk, we

search for a perturbation, δm, which reduces the objective function. Linearizing the

forward simulation by:

F [mk +δm]≈ F [mk]+ J[mk]δm (2.12)

and setting the gradient equal to zero yields the standard Gauss-Newton equations to
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be solved for the perturbation δm:

(J[m]>W>d WdJ[m]+βW>mWm)δm =−g(m). (2.13)

The updated model is given by:

mk+1 = mk + γδm, (2.14)

where γ ∈ (0,1] is a coefficient that can be found by a line search. Setting γ = 1 is the

default and a line search is necessary if φ(mk+1)≥ φ(mk).

The iterative optimization process is continued until a suitable stopping criterion

is reached. Completion of this iterative process yields a minimization for particular

value of the trade-off parameter, β . If we are invoking a cooling schedule, and if the

desired misfit tolerance is not yet achieved, β is reduced and the iterative numerical

optimization procedure is repeated.

Sensitivities

A central element in the above approach is the computation of the sensitivities. The

sensitivity functional is defined by:

J[m] =
∂F [m]

∂m
= P

(
∂u
∂m

)
(2.15)

where P is a linear projection and d· indicates total difference. There are numerous

approaches to computing the sensitivity, but the chosen methodologies are dictated by

the size of the problem. The discrete sensitivity matrix, J, is a dense N×M matrix,

where N is the number of data and M is the number of model parameters. For some
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problems, J can be computed directly and stored. Ultimately, this computation and

storage demands the solution of numerous forward problems (cf. Haber (2015)). In

another approach, we can factor J[m] in symbolic form. In the general case, we solve

for the sensitivity implicitly by taking the derivative of C(m,u) = 0 (equation 2.2) to

yield:

∇mC(m,u)dm+∇uC(m,u)du = 0, (2.16)

where ∇· indicates partial difference and both ∇mC(m,u) and ∇uC(m,u) are ma-

trices. For a given model, ∇uC(m,u) corresponds to the forward simulation opera-

tor. If the forward problem is well-posed, then the matrix is invertible (Haber, 2015).

Equation 2.16 can be rearranged to:

du =−(∇uC(m,u))−1
∇mC(m,u)dm, (2.17)

and combined with equation 2.15 to obtain a formula for the sensitivity matrix. We

note that this matrix is dense, often large, and need not actually be formed and stored

and the inverse of ∇uC(m,u) need not be formed explicitly.

Inversion as optimization

Once the inverse problem has been stated in an optimization framework (equation

2.9), an appropriate optimization routine can be selected. For example, if bound con-

straints are incorporated, we can use a projected Gauss-Newton algorithm. In large-

scale inversions, special attention may have to be given to ensuring a memory efficient

optimization algorithm. However, the underlying mechanics of the algorithms often

remain unchanged. In a geophysical inversion, we require a model that is consistent
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with a priori information and known, or assumed, statistical distributions (e.g. the

discrepancy principle). As such, the stopping criteria of the inversion are often imple-

mented differently than traditional optimization algorithms or a series of incomplete

optimization algorithms are invoked while changing the objective function (Oldenburg

and Li, 2005; Haber, 2015; Haber et al., 2000).

The optimization of the stated inverse problem provides the machinery to obtain a

mathematical solution. However, before the model is accepted as a viable candidate,

there are numerous questions that should be investigated. For example, some questions

to address might include: (a) How well does the recovered model fit the observed

data? (b) Is there bias in the misfits between the observed and predicted data? (c)

What was the path for the convergence? (d) Is there too much or too little structure?

(e) Does the model fit with prior knowledge and other data sets? The final results

and details about how the inversion algorithm has performed all provide clues as to

whether the constructed model can be accepted or if elements in our procedure or its

numerical implementation need to be altered and the inversion rerun. These might

include: adjusting the assigned uncertainties in the misfit function; altering the model

regularization; or, changing aspects of the numerical computations.

2.2.3 Evaluation/interpretation

In this section, we return to the initial question posed, which the inversion was de-

signed to help answer. Questions of interest might include: (a) Are the interesting

features supported by the data or are they artifacts?; (b) Does the result make sense

geologically and geophysically?; and (c) Are there interesting features that should be

investigated further? Addressing these questions usually involves repeating the inver-

sion process with appropriate modifications (cf. Oldenburg and Li (2005); Pidlisecky
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et al. (2011); Lines et al. (1988)). As such, we require an implementation that is inher-

ently and unequivocally modular, with all pieces available for manipulation. Black-

box software, where the implementations are hidden, obfuscated, or difficult to ma-

nipulate, does not promote experimentation and investigation. Exposing the details

of the implementation to the geophysicist in a manner that promotes productivity and

question-based interrogation is the goal of SIMPEG and is the topic of the next section.

2.3 Modular implementation

An overwhelming amount of choices must be made while working through the forward

modeling and inversion process (Figure 2.1). As a result, software implementations of

this workflow often become complex and highly interdependent, making it difficult

to interact with other scientists or to ask them to pick up and change the work. Our

approach to handling this complexity is to propose a framework, Figure 2.2, which

compartmentalizes the implementation of inversions into various units. We present

the framework in this specific modular style, as each unit contains a targeted subset

of choices crucial to the inversion process. The aim of the SIMPEG framework, and

implementation, is to allow users to move between terminology, math, documentation,

and code with ease, such that there is potential for development in a scalable way.

The SIMPEG implementation provides a library that mimics the framework shown in

Figure 2.2, with each unit representing a base class. These base classes can be inherited

in specific geophysical problems to accelerate development as well as to create code

that is consistent between geophysical applications.
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2.3.1 Implementation choices

We chose Python (Van Rossum and Drake Jr, 1995) for the implementation of SIM-

PEG. Python supports object-oriented practices and interactive coding, has extensive

support for documentation, and has a large and growing open source scientific com-

munity (Lin, 2012). As an interpreted language, however, there are occasionally bot-

tlenecks on speed or memory. These inefficiencies may mean that the code will not be

able to scale to a production quality code. However, these computational bottlenecks

can often be identified through profiling and can be written in a lower-level language

and wrapped in Python. Additionally, these problems are admissible when the goal

of the software is clear: we require an interactive research tool where geophysical

problems from many disciplines live in one place to enhance experimentation and dis-

semination of new ideas. To enhance the dissemination of our work, we have released

our work under the permissive MIT license for open source software. The MIT license

neither forces packages that use SIMPEG to be open source, nor does it restrict com-

mercial use. We have also ensured that we have followed best practices, with regard to

version control, code-testing, and documentation (Wilson et al., 2014).

2.3.2 Overview

As discussed in the previous section, the process of obtaining an acceptable model

from an inversion generally requires the geophysicist to perform several iterations of

the inversion workflow while rethinking and redesigning each piece of the framework

to ensure it is appropriate in the current context. Inversions are experimental and em-

pirical by nature and our software package is designed to facilitate this iterative pro-

cess. To accomplish this iterative process, we have divided the inversion methodology

into eight major components (Figure 2.2). The Mesh class handles the discretization
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of the earth and also provides numerical operators. The forward simulation is split

into two classes: the Survey and the Problem. The Survey class handles the

geometry of a geophysical problem as well as sources. The Problem class handles

the simulation of the physics for the geophysical problem of interest. Although cre-

ated independently, these two classes must be paired to form all of the components

necessary for a geophysical forward simulation and calculation of the sensitivity. The

Problem creates geophysical fields, given a source from the Survey. The Survey

interpolates these fields to the receiver locations and converts them to the appropri-

ate data type (for example, by selecting only the measured components of the field).

Each of these operations may have associated derivatives, with respect to the model

and the computed field; these associated derivatives are included in the calculation

of the sensitivity. For the inversion, a DataMisfit is chosen to capture the good-

ness of fit of the predicted data and a Regularization is chosen to handle non-

uniqueness. These inversion elements and an Optimization routine are combined

into an inverse problem class (InvProblem). InvProblem is the mathematical

statement (i.e. similar to equation 2.9) that will be numerically solved by running an

Inversion. The Inversion class handles organization and dispatch of directives

between all of the various pieces of the framework.

The arrows in Figure 2.2 indicate what each class takes as a primary argument. For

example, both the Problem and Regularization classes take a Mesh class as

an argument. The diagram does not show class inheritance, as each of the base classes

outlined have many subtypes that can be interchanged. The Mesh class, for example,

could be a regular Cartesian mesh or a cylindrical coordinate mesh, which have many

common properties. We can exploit these common features, such as both meshes being

created from tensor products, through inheritance of base classes; differences can be
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Figure 2.2: SIMPEG framework indicating the flow of information. In the im-
plementation, each of these modules is a base class.

expressed through subtype polymorphism. We refer the reader to the online, up-to-

date documentation (http://docs.simpeg.xyz) to observe the class inheritance structure

in depth.

2.3.3 Motivating example

We will use the DC resistivity problem from geophysics to motivate and explain the

various components of the SIMPEG framework. This example will be referred to

throughout this section. We will introduce the example briefly here and refer the reader

to Appendix B.2.4 for a more in-depth discussion. The governing equations for DC
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resistivity are:

∇ ·~j = I(δ (~r−~rs+)−δ (~r−~rs−)) = q

1
σ

~j =−∇φ

(2.18)

where σ is the electrical conductivity, φ is the electric potential, and I is the input cur-

rent at the positive and negative dipole locations~rs± , captured as Dirac delta functions.

In DC resistivity surveys, differences in the potential field, φ , are sampled using dipole

receivers to collect observed data. To simulate this partial differential equation (PDE)

(or set of PDEs, if there are multiple current injection locations), we must discretize

the equation onto a computational mesh.

2.3.4 Mesh

Any numerical implementation requires the discretization of continuous functions into

discrete approximations. These approximations are typically organized in a mesh,

which defines boundaries, locations, and connectivity. In geophysical simulations, we

require the definitions of averaging, interpolation, and differential operators for any

mesh. Throughout our work, we have implemented discretization techniques, using a

staggered mimetic finite volume approach (Hyman and Shashkov, 1999; Hyman et al.,

2002). For an in-depth discussion of the finite volume techniques employed in this

thesis, we refer the reader to Appendix B. This work has resulted in an open source

package called discretize, which provides finite volume techniques abstracted

across four mesh types: (1) tensor product mesh; (2) cylindrically symmetric mesh; (3)

logically rectangular, non-orthogonal mesh; and (4) octree and quadtree meshes. The

techniques and interface to the methodologies are specifically tailored for efficiency

and accessibility for geophysical inverse problems. To create a new Mesh instance, a

TensorMesh class can be selected from the discretize module and instantiated
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with a list of vectors: Here, we import the discretize library as well as NumPy

import discretize # See Appendix A and Cockett et al. 2016
import numpy as np
import scipy.sparse as sp
hx = np.ones(30)
hy = np.ones(30)
mesh = discretize.TensorMesh([hx, hy])

Program 2.1: Creation of a 2D tensor product mesh using the discretize
package discussed in Appendix B.

(np) and SciPy’s sparse matrix package (sp) (Oliphant, 2007; Jones et al., 2001). The

vectors hx and hy describe the cell size in each mesh dimension. The dimension of

the mesh is defined by the length of the list, requiring very little change to switch mesh

dimensions or type. Once an instance of a mesh is created, access to the properties

and methods, shown in Table 2.1, is possible. Additional methods and visualization

routines are also included in the Mesh classes. Of note in Table 2.1 are organizational

properties (such as counting and geometric properties), locations of mesh variables as

Cartesian grids, differential and averaging operators, and interpolation matrices. We

can readily extend the mesh implementation to other types of finite volume meshes (for

example, octree (Haber and Heldmann, 2007), logically rectangular non-orthogonal

meshes (Hyman et al., 2002), and unstructured meshes (Ollivier-Gooch and Van Al-

tena, 2002)). Additionally, this piece of the framework may be replaced by other

methodologies such as finite elements.

With the differential operators readily accessible across multiple mesh types, sim-

ulation of a cell-centered discretization for conductivity, σ , in the DC resistivity prob-

lem is straightforward. The discretized system of equations, B.4, can be written as:

A(σ)u = D(Mf
1/σ

)−1D>u =−q, (2.19)
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Table 2.1: Selected Mesh class properties with explanations.

Property or Function Explanation
dim Dimension of the mesh
x0 Location of the origin
nC, nN, nF, nE The number of cells, nodes, faces, or edges. (e.g. nC is

the total number of cells)
vol, area, edge Geometric measurements for the mesh
gridN, gridCC, etc. Array of grid locations
nodalGrad Gradient of a nodal variable→ edge variable
faceDiv Divergence of a face variable→ cell-centered variable
edgeCurl Curl of a edge variable→ face variable
cellGrad Gradient of a cell-centered variable→ face variable
aveF2CC, aveN2CC,
etc.

Averaging operators (e.g. F→CC, takes values on faces
and averages them to cell-centers)

getInterpolationMat(loc) Interpolation matrix for xyz locations

where D and D> are the divergence and ‘gradient’ operators, respectively. This equa-

tion is assuming Dirichlet boundary conditions and a weak formulation of the DC re-

sistivity equations, as in Section B.2.5. The conductivity, σ , is harmonically averaged

from cell-centers to cell-faces to create the matrix (Mf
1/σ

)−1 (Pidlisecky et al., 2007).

Note that the matrix (Mf
1/σ

)−1 is diagonal when the physical property is isotropic or

has coordinate anisotropy on a tensor product mesh, so the inverse is trivial. Using our

discretize package, this equation is written as:

D = mesh.faceDiv
Msig = mesh.getFaceInnerProduct(sigma, invProp=True, invMat=True)
A = D*Msig*D.T

Program 2.2: Creation of the matrix A(σ) for the direct current resistivity prob-
lem. See Appendix B for details on finite volume.

The code is easy to read, looks similar to the math, can be built interactively us-

ing tools such as IPython (Pérez and Granger, 2007), and is not dependent on the

dimension of mesh used. Additionally, it is decoupled from the mesh type. For ex-
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ample, Figure 2.3 is generated by solving a DCProblem for three different mesh

types: TensorMesh; TreeMesh; and, CurvilinearMesh. Other than the spe-

cific mesh generation code, no other modifications to the DC problem were neces-

sary (see the online examples provided in SIMPEG). Given the electrode locations,

a q can be constructed on each mesh and the system, A(σ)u = −q, can be solved.

There are many excellent packages available to solve matrix equations and we have

created a library to interface many of these direct and iterative solvers. The package,

pymatsolver, comes with a few different types of Solver objects that provide a

simple and common interface to Super-LU, Paradiso, and Mumps as well as including

a few simple preconditioners for iterative solvers (Li, 2005; Schenk and Gartner, 2004;

Duff et al., 1986; Balay et al., 2012). The potential field can be projected onto the re-

from pymatsolver import PardisoSolver # Solver wrapping utilities
Ainv = PardisoSolver(A) # Create a solver object
u = Ainv * (- q)
mesh.plotImage(u)

Program 2.3: Solving and plotting the fields (φ ) for direct current resistivity us-
ing pymatsolver and visualization utilities in SIMPEG.

ceiver electrode locations through interpolation matrices, which are constructed by the

Mesh class. Additionally, there are multiple visualization routines that have been in-

cluded in the Mesh class for rapid visualization and interrogation of geophysical fields

and physical properties (Figure 2.3). We note that these code snippets can be easily be

combined in a script, highlighting the versatility and accessibility of the Mesh classes

in discretize.

This script will be expanded upon and segmented into the various pieces of the

framework in the following sections. We find that the development of geophysical

codes is often iterative and requires ‘scripting’ of equations. Only after these equations
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Figure 2.3: Solving the DC resistivity problem for a dipole and using the meshes
visualization routine for the potential, φ , for three different mesh types: (a)
TensorMesh, (b) TreeMesh, and (c) CurvilinearMesh. The potential has
been interpolated onto the tensor mesh for visualization.

are correct, as demonstrated by an appropriate test (e.g. Tests.checkDerivative),

do we formalize and segment our script to enable a geophysical inversion to be run.

The toolbox that SIMPEG provides promotes this interactive and iterative style of de-

velopment.

2.3.5 Forward simulation

The forward simulation in SIMPEG is broken up into a Survey class and a Problem

class. The Problem class contains the information and code that capture both the

physics used to describe the connection between a physical property distribution and

the fields/fluxes that are measured in a geophysical survey. The Survey class con-

tains information about the observed data and the geometry of how to collect the data

(e.g. locations and types of receivers and sources) given a Problem that simulates

fields. The Problem and the Survey must be paired together to simulate predicted

data. We decided on this separation of the code because it is possible to have multiple

mathematical descriptions, of varying complexities, which explain the same observed

data. For example, a seismic simulation could have multiple approximations to the
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physics, which increase in complexity and accuracy, from straight-ray tomography or

Eikonal tomography to full waveform simulation. Additionally, there are often mul-

tiple types of geophysical surveys that could be simulated from the same Problem

class.

Table 2.2: Base Problem class properties with explanations.

Property or Function Explanation
fields(m) Calculation of the fields given a model
Jvec(m, v) Sensitivity times a vector
Jtvec(m, v) Adjoint sensitivity times a vector
Jfull(m) Full sensitivity matrix
mapping Maps the model to a physical property

The crucial aspects of the Problem class are shown in Table 2.2 and the proper-

ties and methods of the Survey class are shown in Table 2.3. We note that each of

the sub-classes of Problem will implement fields and sensitivities in a different way,

likely with additional methods and properties. Furthermore, the choice of terminology

becomes clearer when these classes are inherited and used in a specific geophysical

method (e.g. a DCProblem or EMProblem). For the DCProblem, the fields

can be created by constructing A(m) and solving with the source terms, Q, which

will be provided by the DCSurvey’s source list (srcList). Each source has at

least one receiver associated with it and the receivers can create a matrix, P, which

project the fields, u, onto the data-space. For example, in the DC problem, a dipole

receiver samples the potential at each electrode location and computes the difference

to give a datum. We note that the process of computing a datum may be more in-

volved and have derivatives with respect the computed fields and, possibly, the model.

We solve much of the organizational bottlenecks through general receiver and source

classes, which can be inherited and tailored to the specific application. The mapping
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in the Problem provides a transformation from an arbitrary model to a discretized

grid function of physical properties. For example, log-conductivity is often used in

the inverse problem for DC resistivity, rather than parameterizing directly in terms of

conductivity. If this choice is made for the model, an appropriate map (i.e. the expo-

nential) must be provided to transform from the model space to the physical property

space (cf. Heagy et al. (2014)).

Table 2.3: Selected Survey class properties with explanations.

Property or Function Explanation
dobs, nD dobs, number of data
std Estimated standard deviations
srcList List of sources with associated receivers
dpred(m) Predicted data given a model, dpred(m)
projectFields(m, u) Projects the fields, P(m,u)
projectFieldsDeriv(m,
u)

Derivative of the projection, dP(m,u)
dm

residual(m) dpred(m)−dobs

2.3.6 DC resistivity forward simulation

We present a simple DC-resistivity survey to demonstrate some of the components

of SIMPEG in action. We use a set of Schlumberger arrays to complete a vertical

sounding. In this example, we have taken our scripts from the previous section de-

scribing the forward simulation and combined them in a package called SimPEG.DC

(http://simpeg.xyz). We use the 3D tensor mesh to run the forward simulation for the

data of this problem. Here the srcList is a list of dipole sources (DC.SrcDipole),

each of which contains a single receiver, (DC.RxDipole). Similar to the illustration

in Figure 2.2, the Problem and the Survey must be paired for either to be used to

simulate fields and/or data. These elements represent the major pieces of any forward
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from SimPEG.EM.Static import DC
survey = DC.SurveyDC(srcList)
problem = DC.ProblemDC(mesh)
problem.pair(survey)
data = survey.dpred(sigma)

Program 2.4: Pairing the Problem and Survey objects to create predicted
data, dpred.

simulation in geophysics; they are crucial and must be well-tested for accuracy and

efficiency before any attempt is made at setting up the inverse problem.

2.3.7 Sensitivities

The sensitivity and adjoint will be used in the optimization routine of the inversion.

Inefficient or inaccurate calculation of the sensitivities can lead to an extremely slow

inversion. This is critical in large-scale inversions, where the dense sensitivity ma-

trix may be too large to hold in memory directly. As discussed in the methodology

section, the sensitivity matrix need not be explicitly created when using an iterative

optimization algorithm, such as Gauss-Newton (2.13), solved with a conjugate gradi-

ent approach. The calculation of vector products with the sensitivity matrices is an

important aspect of SIMPEG, which has many tools to make construction and testing

of these matrices modular and simple. For the DC resistivity example, the discretized

governing equations are written as: C(m,u) = A(m)u−q = 0. We can implement the

sensitivity equations 2.15 and 2.17 to yield:

J =−P(A(m)−1
∇mC(m,u)), (2.20)

where ∇mC(m,u) is a known sparse matrix, A(m) is the forward operator and is

equivalent to ∇uC(m,u), and P is a projection matrix (cf. Pidlisecky et al. (2007)).

The sensitivity matrix is dense and holding it in memory may not be possible. If an
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iterative solver is used in the optimization, only matrix vector products are necessary

and the sensitivity need not be explicitly calculated or stored. Program 2.5 outlines

the calculation of Jvec, given a model, m, the fields, u, and a vector to multiply, v.

In Program 2.5, we draw the distinction between the model, m, and the conductivity,

sig, which are connected through a mapping, σ =M (m), and associated derivatives.

The matrix, ∇mC(m,u), is denoted dCdm and formed by looping over each source in

the DC resistivity survey.

1 def Jvec(self, m, v, u=None):
2 # Set current model; clear dependent property A(m)
3 self.curModel = m
4 sigma = self.curModel.transform # σ = M (m)
5 if u is None:
6 # Run forward simulation if u not provided
7 u = self.fields(self.curModel)
8 else:
9 shp = (self.mesh.nC, self.survey.nTx)

10 u = u.reshape(shp, order=’F’)
11

12 D = self.mesh.faceDiv
13 G = self.mesh.cellGrad
14 # Derivative of model transform, ∂σ

∂m
15 dsigdm_x_v = self.curModel.transformDeriv * v
16

17 # Take derivative of C(m,u) w.r.t. m
18 dCdm_x_v = np.empty_like(u)
19 # loop over fields for each transmitter
20 for i in range(self.survey.nTx):

21 # Derivative of inner product,
(

M f
1/σ

)−1

22 dAdsig = D * self.dMdsig( G * u[:,i] )
23 dCdm_x_v[:, i] = dAdsig * dsigdm_x_v
24

25 # Take derivative of C(m,u) w.r.t. u
26 dCdu = self.A
27 # Solve for ∂u

∂m
28 dCdu_inv = self.Solver(dCdu, **self.solverOpts)
29 P = self.survey.getP(self.mesh)
30 J_x_v = - P * mkvc( dCdu_inv * dCdm_x_v )
31 return J_x_v

Program 2.5: Sensitivity times a vector method for the DCProblem.
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2.3.8 Inversion elements

As indicated in the methodology section, there are two key elements needed for a

geophysical inversion: DataMisfit and Regularization. The DataMisfit

must have a way to calculate predicted data and, as such, it takes a paired survey as an

initial argument, which allows forward simulations to be completed. DataMisfit

and Regularization have similar interfaces, which are shown in Table 2.4. The

DataMisfit class also has a property, targetMisfit, for the target misfit, which

can be checked by an InversionDirective and used as a stopping criteria. As

discussed in the methodology section, the Regularization is defined indepen-

dently from the forward simulation. The regularization is with respect to the model,

which may or may not be on the same mesh as the forward simulation (i.e. meshI 6=

meshF ). In this case, a mapping of a model to a physical property on the forward sim-

ulation mesh is necessary for the Problem. The Regularization class also has a

mapping property, which allows a wide variety of regularizations to be implemented

(e.g. an active cell map used to ignore air cells). As such, the Regularization

mapping is often independent from the mapping in the Problem class, which out-

puts a physical property. Included in the SIMPEG package are basic Tikhonov regular-

ization routines and simple l2 norms for both Regularization and DataMisfit

classes. Each of these classes has properties for the appropriate model and data weight-

ings, as discussed in the previous section (e.g. Wm and Wd). These classes are readily

extensible, such that they can be customized to specific problems and applications (for

example, considering l1 or lp norms or customized regularizations).
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Table 2.4: Common functions for the Regularization, and DataMisfit
classes.

Function Explanation
obj(m) Evaluate the functional given a model when the class is

called directly.
obj.deriv(m) First derivative returns a vector.
obj.deriv2(m, v) Second derivative as an implicit operator.

2.3.9 Inverse problem and optimization

The InvProblem combines the DataMisfit and Regularization classes by

introducing a trade-off parameter, β . In addition to the trade-off parameter, there are

methods that evaluate the objective function and its derivatives (Table 2.4). Additional

methods can save fields so that information is not lost between evaluation of the ob-

jective function and the derivatives. The InvProblem may also include bounds on

the model properties so that they can be used in the optimization routine. If we con-

sider a joint or integrated inversion, multiple data misfit functions, employing different

physics, and that multiple types of regularization functionals may be summed together,

possibly with relative weightings, we can define the InvProblem (cf. Lines et al.

(1988); Holtham and Oldenburg (2010); Heagy et al. (2014)). Once the InvProblem

can be evaluated to a scalar with associated derivatives, an Optimization can ei-

ther be chosen among the ones included in SIMPEG or provided by an external pack-

age. Optimization routines in SIMPEG include steepest descent, L-BFGS, and Inexact

Gauss-Newton (cf. Nocedal and Wright (1999)). The components are relatively sim-

ple to hook up to external optimization packages (for example, with the optimization

package in SciPy (Jones et al., 2001)).

55



2.3.10 Inversion

The Inversion conducts all communication between the various components of the

framework and is instantiated with an InvProblem object. The Inversion has

very few external methods but contains the list of directives that are executed through-

out the inversion. Each InversionDirective has access to the components of the

inversion framework and can thus access and change any of these components while

the inversion is running. A simple directive may print optimization progress or save

models to a database. More complicated directives may change or compute parame-

ters such as, β , reference models, data weights, or model weights. These directives are

often guided by heuristics, but versions can often be formalized (see, for example, the

iterative Tikhonov style inversion (Tikhonov and Arsenin, 1977; Parker, 1994; Olden-

burg and Li, 2005)). There are many computational shortcuts that may be investigated,

such as how many inner and outer CG iterations to complete in the inexact Gauss-

Newton optimization and whether the number of iterations should change as the al-

gorithm converges to the optimal model. The directiveList in the Inversion

encourages heuristics, which geophysicists often complete ‘by hand’, to be codified,

combined, and shared via a plug-in style framework.

2.3.11 DC resistivity inversion

We will build on the example presented in Section 2.3.6, which has a survey setup

that only provides enough information for a vertical sounding. As such, we will

decouple our 3D forward mesh and 1D inversion mesh and connect them through a

mapping (cf. Kang et al. (2015b)). Additionally, since electrical conductivity is a

log-varying parameter, we will also construct a model space that is optimized in log

space. Both of these model transformations will be handled with a single map, M ,
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where σ = M (m). We have provided a number of common mapping transformations

from SimPEG import Maps
mapping = Maps.ExpMap(mesh) * Maps.SurjectVertical1D(mesh)
sigma = mapping * model

Program 2.6: Creation and chaining together of multiple mapping properties for
a model of σ .

in the SimPEG.Maps package and these can be easily combined with a multiplication

symbol. Additionally, when using these maps, we calculate the derivatives using the

chain rule, allowing them to be easily included in the sensitivity calculation (cf. Pro-

gram 2.5, line 15). Figure 2.5 demonstrates this mapping visually. The 1D model is in

log(σ), shown in Figure 2.4(a) as a black solid line, and the transformation produces

a 3D sigma vector, which we plotted in Figure 2.4(b). We can now use the same sim-

ulation machinery as discussed in Section 2.3.6, with a single change: Synthetic data,

from SimPEG.EM.Static import DC
problem = DC.ProblemDC(mesh, sigmaMap=mapping)

Program 2.7: Instantiation of the direct current resistivity problem with a map-
ping for the σ property.

dobs, are created using the 1D log-conductivity model and adding 1% Gaussian noise.

When creating the regularization inversion element, we note again that the mapping

parameter can be used to regularize in the space that makes the most sense. In this

case, we will regularize on a 1D mesh in log-conductivity space; as such, we will sup-

ply only a 1D tensor mesh to the regularization. An inversion is run by combining the

tools described above. Figure 2.2 illustrates how the components are put together. We

note that there are many options and inputs that can enhance the inversion; refer to the

online up-to-date documentation (http://docs.simpeg.xyz). The result of this inversion

can be seen in Figure 2.5(a) and (b) for the predicted data and model, respectively.
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mesh1D = discretize.TensorMesh([mesh.hz])
dmis = DataMisfit.l2_DataMisfit(survey)
reg = Regularization.Tikhonov(mesh1D)
opt = Optimization.InexactGaussNewton()
invProb = InvProblem.BaseInvProblem(dmis, reg, opt)
inv = Inversion.BaseInversion(invProb)
mopt = inv.run(m0)

Program 2.8: Creating a boiler plate inversion at a low level.

Figure 2.4: Illustration of mapping in DC inversion. (a) 1D log conductivity
model. (b) 3D conductivity model.

Figure 2.5: (a) Observed (black line) and predicted (red line) apparent resistivity
values. (b) True and recovered 1D conductivity model.
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2.4 Conclusions

Producing an interpretation from geophysical data through an inversion is an iterative

process with many moving pieces. A number of inversion components, techniques, and

methodologies have become standard practice. The development of new methodolo-

gies to address the evolving challenges in the geosciences will build upon and extend

these standard practices, requiring experimentation with, and recombination of, exist-

ing techniques. To facilitate this combinatorial experimentation, we have organized the

components of geophysical inverse problems in a comprehensive, modular framework.

Our implementation of this framework, SIMPEG (http://www.simpeg.xyz), provides

an extensible, well-tested toolbox and infrastructure that supports problems, including

electromagnetics, fluid flow, seismic, and potential fields. As SIMPEG is formulated

with the inverse problem as its core focus, many design choices have been made to en-

sure that sensitivities are efficient to compute and are readily available; these choices

have shown to be advantageous for integrated geophysical inversions. The modular

framework that we suggest splits the code into components, which are motivated di-

rectly by geophysical methodology and terminology. Splitting the code allows each

piece to be improved by specialists, while promoting quantitative communication be-

tween researchers.

To accelerate the dissemination and adoption of SIMPEG in the wider community,

we have made the entire project open source under the permissive MIT License. The

usability of this framework has been a focus of SIMPEG and we strive to use best prac-

tices of continuous integration, documentation (http://docs.simpeg.xyz), unit-testing,

and version-control. These practices are key to have in place as more modules and

packages are created by the community.
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Chapter 3

Richards equation

3.1 Introduction

Studying the processes that occur in the vadose zone, the region between the earth’s

surface and the fully saturated zone, is of critical importance for understanding our

groundwater resources. Fluid flow in the vadose zone is described by the Richards

equation and parameterized by hydraulic conductivity, which is a nonlinear function

of pressure head (Richards, 1931; Celia et al., 1990). Typically, hydraulic conduc-

tivity is heterogeneous and can have a large dynamic range. In any site characteri-

zation, the spatial estimation of the hydraulic conductivity function is an important

step. Achieving this, however, requires the ability to efficiently solve and optimize the

nonlinear, time-domain Richards equation. Rather than working with a full, implicit,

3D time-domain system of equations, simplifications are consistently used to avert the

conceptual, practical, and computational difficulties inherent in the parameterization

and inversion of the Richards equation. These simplifications typically parameterize

the conductivity and assume that it is a simple function in space, often adopting a ho-
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mogeneous or one dimensional layered soil profile (cf. (Binley et al., 2002; Deiana

et al., 2007; Hinnell et al., 2010; Liang and Uchida, 2014)). Due to the lack of con-

straining hydrologic data, such assumptions are often satisfactory for fitting observed

measurements, especially in two and three dimensions as well as in time. However,

as more data become available, through spatially extensive surveys and time-lapse

proxy measurements (e.g. direct current resistivity surveys and distributed tempera-

ture sensing), extracting more information about subsurface hydrogeologic parame-

ters becomes a possibility. The proxy data can be directly incorporated through an

empirical relation (e.g. (Archie, 1942)) or time-lapse estimations can be structurally

incorporated through some sort of regularization technique (Haber and Gazit, 2013;

Haber and Oldenburg, 1997; Hinnell et al., 2010). Recent advances have been made

for the forward simulation of the Richards equation in a computationally-scalable man-

ner (Orgogozo et al., 2014). However, the inverse problem is non-trivial, especially in

three-dimensions (Towara et al., 2015), and must be considered using modern numer-

ical techniques that allow for spatial estimation of hydraulic parameters. However,

this is especially intricate to both derive and implement due to the nonlinear, time-

dependent forward simulation and potential model dependence in many aspects of the

Richards equation (e.g. multiple empirical relations, boundary/initial conditions). To

our knowledge, there has been no large-scale inversion for distributed hydraulic pa-

rameters in three dimensions using the Richards equation as the forward simulation.

Inverse problems in space and time are often referred to as history matching prob-

lems (see Dean and Chen (2011); Dean et al. (2008); Sarma et al. (2007); Oliver and

Reynolds (2001); Šimunek et al. (2012) and reference within). Inversions use a flow

simulation model, combined with some a-priori information, in order to estimate a spa-

tially variable hydraulic conductivity function that approximately yields the observed
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data. The literature shows a variety of approaches for this inverse problem, includ-

ing trial-and-error, stochastic methods, and various gradient based methods (Bitterlich

et al., 2004; Binley et al., 2002; Carrick et al., 2010; Durner, 1994; Finsterle and Zhang,

2011; Mualem, 1976; Šimunek and van Genuchten, 1996). The way in which the com-

putational complexity of the inverse method scales becomes important as problem size

increases (Towara et al., 2015). Computational memory and time often become a bot-

tleneck for solving the inverse problem, both when the problem is solved in 2D and,

particularly, when it is solved in 3D (Haber et al., 2000). To solve the inverse prob-

lem, stochastic methods are often employed, which have an advantage in that they can

examine the full parameter space and give insights into non-uniqueness (Finsterle and

Kowalsky, 2011). However, as the number of parameters we seek to recover in an in-

version increases, these stochastic methods require that the forward problem be solved

many times, which often makes these methods impractical. This scalability, especially

in the context of hydrogeophysics has been explicitly noted in the literature (cf. Binley

et al. (2002); Deiana et al. (2007); Towara et al. (2015); Linde and Doetsch (2016)).

Derivative-based optimization techniques become a practical alternative when the

forward problem is computationally expensive or when there are many parameters to

estimate (i.e. thousands to millions). Inverse problems are ill-posed and thus to pose a

solvable optimization problem, an appropriate regularization is combined with a mea-

sure of the data misfit to state a deterministic optimization problem (Tikhonov and

Arsenin, 1977). Alternatively, if prior information can be formulated using a statis-

tical framework, we can use Bayesian techniques to obtain an estimator through the

Maximum A Posteriori model (MAP) (Kaipio and Somersalo, 2004). In the context of

Bayesian estimation, gradient based methods are also important, as they can be used

to efficiently sample the posterior (Bui-Thanh and Ghattas, 2015).
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A number of authors have sought solutions for the inverse problem, where the for-

ward problem is the Richards equation (cf. (Bitterlich and Knabner, 2002; Iden and

Durner, 2007; Šimunek et al., 2012) and references within). The discretization of the

Richards equation is commonly completed by an implicit method in time and a finite

volume or finite element method in space. Most work uses a Newton-like method

for the resulting nonlinear system, which arises from the discretization of the forward

problem. For the deterministic inverse problem using the Richards equation, previous

work uses some version of a Gauss-Newton method (e.g. Levenberg-Marquardt), with

a direct calculation of the sensitivity matrix (Finsterle and Kowalsky, 2011; Šimunek

and van Genuchten, 1996; Bitterlich and Knabner, 2002). However, while these ap-

proaches allow for inversions of moderate scale, they have one major drawback: the

sensitivity matrix is large and dense; its computation requires dense linear algebra and

a non-trivial amount of memory (cf. (Towara et al., 2015)). Previous work used either

external numerical differentiation (e.g. PEST) or automatic differentiation in order

to directly compute the sensitivity matrix (Finsterle and Zhang, 2011; Bitterlich and

Knabner, 2002; Doherty, 2004; Towara et al., 2015). Finite difference can generate

inaccuracies in the sensitivity matrix and, consequently, tarry the convergence of the

optimization algorithm. Furthermore, external numerical differentiation is computa-

tionally intensive and limits the number of model parameters that can be estimated.

The goal of this chapter is to suggest a modern numerical formulation that allows

the inverse problem to be solved without explicit computation of the sensitivity matrix

by using exact derivatives of the discrete formulation (Haber et al., 2000). Our tech-

nique is based on the discretize-then-optimize approach, which discretizes the forward

problem first and then uses a deterministic optimization algorithm to solve the inverse

problem (Gunzburger, 2003). To this end, we require the discretization of the forward
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problem. Similar to the work of (Celia et al., 1990), we use an implicit Euler method

in time and finite volume in space. Given the discrete form, we show that we can an-

alytically compute the derivatives of the forward problem with respect to distributed

hydraulic parameters and, as a result, obtain an implicit formula for the sensitivity. The

formula involves the solution of a linear time-dependent problem; we avoid computing

and storing the sensitivity matrix directly and, rather, suggest a method to efficiently

compute the product of the sensitivity matrix and its adjoint times a vector. Equipped

with this formulation, we can use a standard inexact Gauss-Newton method to solve

the inverse problem for distributed hydraulic parameters in 3D. This large-scale dis-

tributed parameter estimation becomes computationally tractable with the technique

presented in this chapter and can be employed with any iterative Gauss-Newton-like

optimization technique.

This chapter is structured as follows: in Section 3.2, we discuss the discretization

of the forward problem on a staggered mesh in space and backward Euler in time; in

Section 3.3, we formulate the inverse problem and construct the implicit functions used

for computations of the Jacobian-vector product. In Section 3.4.1, we demonstrate the

validity of the implementation of the forward problem and sensitivity calculation. In

Section 3.4, we validate the numerical implementation and compare to the literature.

Chapter 4 will expand upon the techniques introduced in this chapter to show the

effectiveness of the implicit sensitivity algorithm in comparison to existing numerical

techniques.

3.1.1 Attribution and dissemination

To accelerate both the development and dissemination of this approach, we have built

these tools on top of an open source framework for organizing simulation and inverse
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problems in geophysics (Cockett et al., 2015c). We have released our numerical im-

plementation under the permissive MIT license. Our implementation of the implicit

sensitivity calculation for the Richards equation and associated inversion implementa-

tion is provided and tested to support 1D, 2D, and 3D forward and inverse simulations

with respect to custom empirical relations and sensitivity to parameters within these

functions. The source code can be found at https://github.com/simpeg/simpeg and may

be a helpful resource for researchers looking to use or extend our implementation. I

have presented early versions of this work at two international conferences (Cockett

and Haber, 2013a,b) and have submitted a version of this manuscript for peer review

(Cockett et al., 2017).

3.2 Forward problem

In this section, we describe the Richards equations and its discretization (Richards,

1931). The Richards equation is a nonlinear parabolic partial differential equation

(PDE) and we follow the so-called mixed formulation presented in (Celia et al., 1990)

with some modifications. In the derivation of the discretization, we give special atten-

tion to the details used to efficiently calculate the effect of the sensitivity on a vector,

which is needed in any derivative based optimization algorithm.

3.2.1 Richards equation

The parameters that control groundwater flow depend on the effective saturation of

the media, which leads to a nonlinear problem. The groundwater flow equation has

a diffusion term and an advection term which is related to gravity and only acts in

the z-direction. There are two different forms of the Richards equation; they differ in

how they deal with the nonlinearity in the time-stepping term. Here, we use the most
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fundamental form, referred to as the ‘mixed’-form of the Richards equation (Celia

et al., 1990):

∂θ(ψ)

∂ t
−∇ · k(ψ)∇ψ− ∂k(ψ)

∂ z
= 0 ψ ∈Ω (3.1)

where ψ is pressure head, θ(ψ) is volumetric water content, and k(ψ) is hydraulic

conductivity. This formulation of the Richards equation is called the ‘mixed’-form

because the equation is parameterized in ψ but the time-stepping is in terms of θ . The

hydraulic conductivity, k(ψ), is a heterogeneous and potentially anisotropic function

that is assumed to be known when solving the forward problem. In this chapter, we

assume that k is isotropic, but the extension to anisotropy is straightforward (Cockett

et al., 2015c, 2016a). The equation is solved in a domain, Ω, equipped with boundary

conditions on ∂Ω and initial conditions, which are problem-dependent.

An important aspect of unsaturated flow is noticing that both water content, θ ,

and hydraulic conductivity, k, are functions of pressure head, ψ . There are many

empirical relations used to relate these parameters, including the Brooks-Corey model

(Brooks and Corey, 1964) and the van Genuchten-Mualem model (Mualem, 1976; van

Genuchten, 1980). The van Genuchten model is written as:

θ(ψ) =


θr +

θs−θr

(1+ |αψ|n)m ψ < 0

θs ψ ≥ 0
(3.2a)

k(ψ) =


Ksθe(ψ)l(1− (1−θe(ψ)−m)m)2

ψ < 0

Ks ψ ≥ 0
(3.2b)
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where

θe(ψ) =
θ(ψ)−θr

θs−θr
, m = 1− 1

n
, n > 1 (3.3)

Here, θr and θs are the residual and saturated water contents, Ks is the saturated hy-

draulic conductivity, α and n are fitting parameters, and, θe(ψ) ∈ [0,1] is the effective

saturation. The pore connectivity parameter, l, is often taken to be 1
2 , as determined by

Mualem (1976). Figure 4.1 shows the functions over a range of negative pressure head

values for four soil types (sand, loam, sandy clay, and clay). The pressure head varies

over the domain ψ ∈ (−∞,0). When the value is close to zero (the left hand side),

the soil behaves most like a saturated soil where θ = θs and k = Ks. As the pressure

head becomes more negative, the soil begins to dry, which the water retention curve

shows as the function moving towards the residual water content (θr). Small changes

in pressure head can change the hydraulic conductivity by several orders of magnitude;

as such, k(ψ) is a highly nonlinear function, making the Richards equation a nonlinear

PDE.

3.2.2 Discretization

The Richards equation is parameterized in terms of pressure head, ψ . Here, we de-

scribe simulating the Richards equation in one, two, and three dimensions. We start

by discretizing in space and then we discretize in time. This process yields a discrete,

nonlinear system of equations; for its solution, we discuss a variation of Newton’s

method.

Spatial Discretization

In order to conservatively discretize the Richards equation, we introduce the flux ~f and

rewrite the equation as a first order system of the form:
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Figure 3.1: The water retention curve and the hydraulic conductivity function for
four canonical soil types of sand, loam, sandy clay, and clay.

∂θ(ψ)

∂ t
−∇ ·~f − ∂k(ψ)

∂ z
= 0 (3.4a)

k(ψ)−1~f = ∇ψ (3.4b)

We then discretize the system using a standard staggered finite volume discretiza-

tion (cf. Ascher (2008); Haber (2015); Cockett et al. (2016a), and Appendix B). This

discretization is a natural extension of mass-conservation in a volume where the bal-

ance of fluxes into and out of a volume are conserved (Lipnikov and Misitas, 2013).

Here, it is natural to assign the entire cell one hydraulic conductivity value, k, which is

located at the cell center. Such assigning leads to a piecewise constant approximation

for the hydraulic conductivity and allows for discontinuities between adjacent cells.

From a geologic perspective, discontinuities are prevalent, as it is possible to have
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large differences in hydraulic properties between geologic layers in the ground. The

pressure head, ψ , is also located at the cell centers and the fluxes are located on cell

faces, which lead to the usual staggered mesh or Marker and Cell (MAC) discretiza-

tion in space (Fletcher, 1988). We demonstrate the discretization in 1D, 2D and 3D on

the tensor mesh in Figure 3.2. We discretize the function, ψ , on a cell-centered grid,

which results in a grid function, ψ . We use bold letters to indicate other grid functions.

Figure 3.2: Discretization of unknowns in 1D, 2D and 3D space. Red circles are
the locations of the discrete hydraulic conductivity K and the pressure head
ψ . The arrows are the locations of the discretized flux ~f on each cell face.

The discretization of a diffusion-like equation on an orthogonal mesh is well-

known (see (Haber and Ascher, 2001; Fletcher, 1988; Haber et al., 2007; Ascher and

Greif, 2011) and reference within). We discretize the differential operators by using

the usual mass balance consideration and the elimination of the flux, f 1. This spatial

discretization leads to the following discrete nonlinear system of ordinary differential

1Here we assume an isotropic conductivity that leads to a diagonal mass matrix and this yields easy
elimination of the fluxes.
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equations (assuming homogeneous Dirichlet boundary conditions):

dθ(ψ)

dt
−D diag

(
kAv(ψ

n+1)
)

Gψ−Gz
(
kAv(ψ

n+1)
)
= 0 (3.5)

Here, D is the discrete divergence operator and G is the discrete gradient operator. The

discrete derivative in the z-direction is written as Gz. The values of ψ and k(ψ) are

known on the cell-centers and must be averaged to the cell-faces, which we complete

through harmonic averaging (Haber and Ascher, 2001).

kAv(ψ) =
1

Av
1

k(ψ)

(3.6)

where Av is a matrix that averages from cell-centers to faces and the division of the

vector is done pointwise; that is, we use the vector notation, (1/v)i = 1/vi. We incor-

porate boundary conditions using a ghost-point outside of the mesh (Trottenberg et al.,

2001).

Time discretization and stepping

The Richards equation is often used to simulate water infiltrating an initially dry soil.

At early times in an infiltration experiment, the pressure head, ψ , can be close to dis-

continuous. These large changes in ψ are also reflected in the nonlinear terms k(ψ)

and θ(ψ); as such, the initial conditions imposed require that an appropriate time

discretization be chosen. Hydrogeologists are often interested in the complete evolu-

tionary process, until steady-state is achieved, which may take many time-steps. Here,

we describe the implementation of a fully-implicit backward Euler numerical scheme.

Higher-order implicit methods are not considered here because the uncertainty associ-

ated with boundary conditions and the fitting parameters in the Van Genuchten models
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(eq. 4.2) have much more effect than the order of the numerical method used.

The discretized approximation to the mixed-form of the Richards equation, using

fully-implicit backward Euler, reads:

F(ψn+1,ψn)=
θ(ψn+1)−θ(ψn)

∆t
−D diag

(
kAv(ψ

n+1)
)

Gψ
n+1−Gz

(
kAv(ψ

n+1)
)
= 0

(3.7)

This is a nonlinear system of equations for ψn+1 that needs to be solved numerically by

some iterative process. Either a Picard iteration (as in Celia et al. (1990)) or a Newton

root-finding iteration with a step length control can be used to solve the system. Note

that to deal with dependence of θ with respect to ψ in Newton’s method, we require

the computation of dθ

dψ
. We can complete this computation by using the analytic form

of the hydraulic conductivity and water content functions (e.g. derivatives of eq. 4.2).

We note that a similar approach can be used for any smooth curve, even when the

connection between θ and ψ are determined empirically (for example, when θ(ψ) is

given by a spline interpolation of field data).

3.2.3 Solving the nonlinear equations

Regardless of the empirical relation chosen, we must solve 3.7 using an iterative root-

finding technique. Newton’s method iterates over m = 1,2, . . . until a satisfactory esti-

mation of ψn+1 is obtained. Given ψn+1,m, we approximate F(ψn+1,ψn) as:

F(ψn+1,ψn)≈ F(ψn,m,ψn)+Jψn+1,mδψ (3.8)
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where the Jacobian for iteration, m, is:

Jψn+1,m =
∂F(ψ,ψn)

∂ψ

∣∣∣∣
ψn+1,m

(3.9)

The Jacobian is a large dense matrix, and its computation necessitates the computation

of the derivatives of F(ψn+1,m,ψn). We can use numerical differentiation in order to

evaluate the Jacobian (or its product with a vector). However, in the context of the

inverse problem, an exact expression is preferred. Given the discrete forward problem,

we obtain that:

Jψn+1,m =
1
∆t

dθ(ψn+1,m)

dψn+1,m − d
dψn+1,m

(
Ddiag

(
kAv(ψ

n+1,m)
)

Gψ
n+1,m)−Gz

dkAv(ψ
n+1,m)

dψn+1,m

(3.10)

Here, recall that kAv is harmonically averaged and its derivative can be obtained by the

chain rule:

dkAv(ψ)

dψ
= diag

(
(Avk−1(ψ))−2)Av diag

(
k−2(ψ)

) dk(ψ)

dψ
(3.11)

Similarly, for the second term in (3.10) we obtain:

∂

∂ψ
(D diag(kAv(ψ))Gψ) = D diag(kAv(ψ))G+D diag(Gψ)

∂kAv(ψ)

∂ψ
(3.12)

Here the notation n+1,m has been dropped for brevity. For the computations above,

we need the derivatives of functions k(ψ) and θ(ψ); note that, since the relations are

assumed local (point wise in space) given the vector, ψ , these derivatives are diagonal
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matrices. For Newton’s method, we solve the linear system:

Jψn+1,m δψ = −F(ψn+1,m,ψn) (3.13)

For small-scale problems, we can solve the linear system using direct methods;

however, for large-scale problems, iterative methods are more commonly used. The

existence of an advection term in the PDE results in a non-symmetric linear system

in the Newton solve. Thus, when using iterative techniques to solve this system, an

appropriate iterative method, such as BICGSTAB or GMRES (Saad, 1996; Barrett et al.,

1994), must be used. For a discussion on solver choices in the context of the Richards

equation please see Orgogozo et al. (2014).

At this point, it is interesting to note the difference between the Newton iteration

and the Picard iteration suggested in (Celia et al., 1990). We can verify that the Pi-

card iteration uses an approximation to the Jacobian Jψn+1,m δψ given by dropping the

second term from (3.12). This term can have negative eigenvalues and dropping it is

typically done when considering the lagged diffusivity method (Vogel, 2001). How-

ever, as discussed in (Vogel, 2001), ignoring this term can slow convergence.

Finally, a new iterate is computed by adding the Newton update to the last iterate:

ψ
n+1,m+1 = ψ

n+1,m +αδψ

where α is a parameter that guarantees that

‖F(ψn,m+1,ψn)‖< ‖F(ψn,m,ψn)‖

To obtain α , we perform an Armijo line search (Nocedal and Wright, 1999). In our
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numerical experiments, we have found that this method can fail when the hydraulic

conductivity is strongly discontinuous and changes rapidly. In such cases, Newton’s

method yields a poor descent direction. Therefore, if the Newton iteration fails to con-

verge to a solution, the update is performed with the mixed-form Picard iteration. Note

that Picard iteration can be used, even when Newtons method fails, because Picard it-

eration always yields a descent direction (Vogel, 2001).

At this point, we have discretized the Richards equation in both time and space

while devoting special attention to the derivatives necessary in Newton’s method and

the Picard iteration as described in (Celia et al., 1990). The exact derivatives of the

discrete problem will be used in the following two sections, which outline the implicit

formula for the sensitivity and its incorporation into a general inversion algorithm. The

implementation is provided as a part of the open source SimPEG project (Cockett et al.

(2015c), http://simpeg.xyz).

3.3 Inverse Problem

The location and spatial variability of, for example, an infiltration front over time is

inherently dependent on the hydraulic properties of the soil column. As such, direct

or proxy measurements of the water content or pressure head at various depths along

a soil profile contain information about the soil properties. We pose the inverse prob-

lem, which is the estimation of distributed hydraulic parameters, given either water

content or pressure data. We frame this problem under the assumption that we wish

to estimate hundreds of thousands to millions of distributed model parameters. Due to

the large number of model parameters that we aim to estimate in this inverse problem,

Bayesian techniques or external numerical differentiation, such as the popular PEST

toolbox (Doherty, 2004), are not computationally feasible. Instead, we will employ a
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direct method by calculating the exact derivatives of the discrete the Richards equa-

tion and solving the sensitivity implicitly. For brevity, we show the derivation of the

sensitivity for an inversion model of only saturated hydraulic conductivity, Ks, from

pressure head data, dobs. This derivation can be readily extended to include the use of

water content data and inverted for other distributed parameters in the heterogeneous

hydraulic conductivity function. We will demonstrate the sensitivity calculation for

multiple distributed parameters in the numerical examples (Section 4.5).

The Richards equation simulation produces a pressure head field at all points in

space as well as through time. Data can be predicted, dpred, from these fields and com-

pared to observed data, dobs. To be more specific, we let Ψ = [(ψ1)>, . . . ,(ψnt )>]> be

the (discrete) pressure field for all space and nt time steps. When measuring pressure

head recorded only in specific locations and times, we define the predicted data, dpred,

as dpred = PΨ(m). Here, the vector m is the vector containing all of the parameters

which we are inverting for (e.g. Ks,α,n,θr, or θs when using the van Genuchten em-

pirical relation). The matrix, P, interpolates the pressure head field, Ψ, to the locations

and times of the measurements. Since we are using a simple finite volume approach

and backward Euler in time, we use linear interpolation in both space and time to com-

pute dpred from Ψ. Thus, the entries of the matrix P contain the interpolation weights.

For linear interpolation in 3D, P is a sparse matrix that contains up to eight non-zero

entries in each row. Note that the time and location of the data measurement is inde-

pendent and decoupled from the numerical discretization used in the forward problem.

A water retention curve, such as the van Genuchten model, can be used for computa-

tion of predicted water content data, which requires another nonlinear transformation,

dθ
pred = Pθ(Ψ(m),m). Note here that the transformation to water content data, in gen-

eral, depends on the model to be estimated in the inversion, which will be addressed
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in the numerical examples. For brevity in the derivation that follows, we will make

two simplifying assumptions: (1) that the data are pressure head measurements, which

requires a linear interpolation that is not dependent on the model; and, (2) that the

model vector, m, describes only distributed saturated hydraulic conductivity. Our soft-

ware implementation does not make these assumptions; our numerical examples will

use water content data, a variety of empirical relations, and calculate the sensitivity to

multiple heterogeneous empirical parameters.

We can now formulate the discrete inverse problem to estimate saturated hydraulic

conductivity, m, from the observed pressure head data, dobs. We frame the inversion

as an optimization problem, which minimizes a data misfit and a regularization term.

Chapter 2 showed an approach for geophysical inversions where hundreds of thou-

sands to millions of distributed parameters are commonly estimated in a determinis-

tic inversion (Tikhonov and Arsenin, 1977; Oldenburg and Li, 2005; Constable et al.,

1987; Haber, 2015). Please refer to the previous chapter for the details of this inversion

methodology. The hydrogeologic literature also shows the use of these techniques;

however, there is also a large community advancing stochastic inversion techniques

and geologic realism (cf. Linde et al. (2015)). Regardless of the inversion algorithm

used, an efficient method to calculate the sensitivity is crucial; this method is the focus

of our work.

3.3.1 Implicit sensitivity calculation

The optimization problem requires the derivative of the pressure head with respect to

the model parameters, ∂Ψ

∂m . We can obtain an approximation of the sensitivity ma-

trix through a finite difference method on the forward problem (Šimunek and van

Genuchten, 1996; Finsterle and Kowalsky, 2011; Finsterle and Zhang, 2011). One
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forward problem, or two, when using central differences, must be completed for each

column in the Jacobian at every iteration of the optimization algorithm. This style of

differentiation proves advantageous in that it can be applied to any forward problem;

however, it is highly inefficient and introduces errors into the inversion that may slow

the convergence of the scheme (Doherty, 2004). Automatic differentiation (AD) can

also be used (Nocedal and Wright, 1999). However, AD does not take the structure of

the problem into consideration and often requires that the dense Jacobian be explicitly

formed. Bitterlich and Knabner (2002) presents three algorithms (finite difference, ad-

joint, and direct) to directly compute the elements of the dense sensitivity matrix for

the Richards equation. As problem size increases, the memory required to store this

dense matrix often becomes a practical computational limitation (Haber et al., 2004;

Towara et al., 2015). As we show next, it is possible to explicitly write the derivatives

of the Jacobian and evaluate their products with vectors using only sparse matrix op-

erations. This algorithm is much more efficient than finite differencing, especially for

large-scale simulations, since it does not require explicitly forming and storing a large

dense matrix. Rather, the algorithm efficiently computes matrix-vector and adjoint

matrix-vector products with sensitivity. We can use these products for the solution of

the Gauss-Newton system when using the conjugate gradient method, which bypasses

the need for the direct calculation of the sensitivity matrix and makes solving large-

scale inverse problems possible. Other geophysical inverse problems have used this

idea extensively, especially in large-scale electromagnetics (cf. Haber et al. (2000)).

The challenge in both the derivation and implementation for the Richards equation

lies in differentiating the nonlinear time-dependent forward simulation with respect to

multiple distributed hydraulic parameters.

The approach to implicitly constructing the derivative of the Richards equation in
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time involves writing the whole time-stepping process as a block bi-diagonal matrix

system. The discrete Richards equation can be written as a function of the model. For

a single time-step, the equation is written:

F(ψn+1(m),ψn(m),m) =
θ

n+1(ψn+1)−θ
n(ψn)

∆t

− D diag
(
kAv(ψ

n+1,m)
)

Gψ
n+1−GzkAv(ψ

n+1,m) = 0 (3.14)

In this case, m is a vector that contains all the parameters of interest. Note that ψn+1

and ψn are also functions of m. In general, θ
n+1 and θ

n are also dependent on the

model; however, for brevity, we will omit these derivatives. The derivatives of F to the

change in the parameters m can be written as:

∇mF(ψn,ψn+1,m) =
∂F

∂kAv

∂kAv

∂m
+

∂F
∂ψn

∂ψn

∂m
+

∂F
∂ψn+1

∂ψn+1

∂m
= 0 (3.15)

or, in more detail:

1
∆t

(
∂θ

n+1

∂ψn+1
∂ψn+1

∂m
− ∂θ

n

∂ψn
∂ψn

∂m

)
−D diag

(
Gψ

n+1)(∂kAv

∂m
+

∂kAv

∂ψn+1
∂ψn+1

∂m

)
− D diag

(
kAv(ψ

n+1)
)

G
∂ψn+1

∂m
−Gz

(
∂kAv

∂m
+

∂kAv

∂ψn+1
∂ψn+1

∂m

)
= 0

(3.16)

The above equation is a linear system of equations and, to solve for dΨ

dm , we rearrange

the block-matrix equation:
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A0(ψ
n+1)︷ ︸︸ ︷[

1
∆t

∂θ
n+1

∂ψn+1 −D diag
(
Gψ

n+1) ∂kAv

∂ψn+1 −D diag
(
kAv(ψ

n+1,m)
)

G−Gz
∂kAv

∂ψn+1

]
∂ψn+1

∂m

+

[
− 1

∆t
∂θ

n

∂ψn

]
︸ ︷︷ ︸

A−1(ψn)

∂ψn

∂m
=

[
−D diag

(
Gψ

n+1) ∂kAv

∂m
−Gz

∂kAv

∂m

]
︸ ︷︷ ︸

B(ψn+1)

(3.17)

Here, we use the subscript notation of A0(ψ
n+1) and A−1(ψ

n) to represent two block-

diagonals of the large sparse matrix A(Ψ,m). Note that all of the terms in these ma-

trices are already evaluated when computing the Jacobian of the Richards equations in

Section 3.2 and that they contain only basic sparse linear algebra manipulations with-

out the inversion of any matrix. If ψ0 does not depend on the model, meaning the

initial conditions are independent, then we can formulate the block system as:

A(Ψ,m)︷ ︸︸ ︷

A0(ψ1)

A−1(ψ1) A0(ψ2)

A−1(ψ2) A0(ψ3)

. . . . . .

A−1(ψnt−1) A0(ψnt
)



∂Ψ

∂m︷ ︸︸ ︷

∂ψ1
∂m
∂ψ2
∂m
...

∂ψnt−1
∂m

∂ψnt
∂m


=

B(Ψ,m)︷ ︸︸ ︷

B1(ψ1)

B2(ψ2)

...

Bn−1(ψnt−1)

Bn(ψnt
)


(3.18)

This is a block matrix equation; both the storage and solve will be expensive if it is

explicitly computed. Indeed, its direct computation is equivalent to the adjoint method

(Bitterlich and Knabner, 2002; Dean and Chen, 2011).
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Since only matrix vector products are needed for the inexact Gauss-Newton opti-

mization method, the matrix J is never needed explicitly and only the products of the

form Jv and J>z are needed for arbitrary vectors v and z. Projecting the full sensitivity

matrix onto the data-space using P results in the following equations for the Jacobian:

J = PA(Ψ,m)−1B(Ψ,m) (3.19a)

J> = B(Ψ,m)>A(Ψ,m)−>P> (3.19b)

In these equations, we are careful to not write dΨ

dm , as it is a large dense matrix which

we do not want to explicitly compute or store. Additionally, the matrices A(Ψ,m) and

B(Ψ,m) do not even need to be explicitly formed because the matrix A(Ψ,m) is a

triangular block-system, which we can solve using forward or backward substitution

with only one block-row being solved at a time (this is equivalent to a single time step).

To compute the matrix vector product, Jv, we use a simple algorithm:

1. Given the vector v calculate y = Bv

2. Solve the linear system Aw = y for the vector w

3. Set Jv = Pw

Here, we note that we complete steps (1) and (2) using a for-loop with only one

block-row being computed and stored at a time. As such, only the full solution, Ψ, is

stored and all other block-entries may be computed as needed. There is a complication

here if data is in terms of water content or effective saturation, as the data projection is

no longer linear and may have model dependence. These complications can be dealt

80



with using the chain rule during step (3). Similarly, to compute the adjoint J>z involves

the intermediate solve for y in A>y = P>z and then computation of B>y. Again, we

solve the block-matrix via backward substitution with all block matrix entries being

computed as needed. Note that the backward substitution algorithm can be viewed as

time stepping, which means that it moves from the final time back to the initial time.

This time stepping is equivalent to the adjoint method that is discussed in Dean and

Chen (2011) and references within. The main difference between our approach and

the classical adjoint-based method is that our approach yields the exact gradient of the

discrete system; no such guarantee is given for adjoint-based methods.

The above algorithm and the computations of all of the different derivatives sum-

marizes the technical details of the computations of the sensitivities. Equipped with

this “machinery”, we now demonstrate that validity of our implementation.

3.4 Numerical results

The focus of this section is to validate and compare our algorithm and implementation

to the literature. The following chapter will focus on applications of this work as well

as demonstrate computational scalability of the algorithm for realistic field examples

(Chapter 4).

3.4.1 Validation

Forward problem

The Richards equation has no analytic solution, which makes testing the code more

involved. Here we have chosen to use a fictitious source experiment to rigorously test

the code. In this experiment, we approximate an infiltration front by an arctangent
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function in one dimension, which is centered over the highly nonlinear part of the van

Genuchten curves, with ψ ∈ [−60,−20] centimeters. The arctangent curve advects

into the soil column with time. The advantage of using an analytic function is that the

derivative is known explicitly and can be calculated at all times. However, it should

be noted that the Richards equation does not satisfy the analytic solution exactly, but

differs by a function, S(x, t). We refer to this function as the fictitious source term.

The analytic function that we used has similar boundary conditions and shape to an

example in Celia et al. (1990) and is considered over the domain x ∈ [0,1].

Ψtrue(x, t) =−20arctan(20((x−0.25)− t))−40 (3.20)

This analytic function is shown at times 0 and 0.5 in Figure 3.3 and has a pressure

head range of ψ ∈ [−60,−20]. We can compare these values to the van Genuchten

curves in Figure 4.1. We can then put the known pressure head into the Richards

equation (3.1) and calculate the analytic derivatives and equate them to a source term,

S(x, t). Knowing this source term and the analytic boundary conditions, we can solve

discretized form of the Richards equation, which should reproduce the analytic func-

tion in Equation 3.20. Table 3.1 shows the results of the fictitious source test when the

number of mesh-cells is doubled and the time-discretization is both fixed and equiv-

alent to the mesh size (i.e. k = h). In this case, we expect that the backward-Euler

time discretization, which is O(δ ), will limit the order of accuracy. The final column

of Table 3.1 indeed shows that the order of accuracy is O(δ ). The higher errors in the

coarse discretization are due to high discontinuities and changes in the source term,

which the coarse discretization does not resolve. We can complete a similar procedure

in two and three dimensions and these tests show similar results of convergence. The
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rigorous testing of the code presented provides confidence in the forward simulation

that is used throughout the following sections of this chapter.

Figure 3.3: Fictitious source test in 1D showing the analytic function Ψtrue at
times 0.0 and 0.5 and the numerical solution Ψ(x,0.5) using the mixed-
form Newton iteration.

Table 3.1: Fictitious source test for Richards equation in 1D using the mixed-
form Newton iteration.

Mesh Size (n) ||Ψ(x,0.5)−Ψtrue(x,0.5)||∞ Order Decrease, O(δ )

64 5.485569e+00
128 2.952912e+00 0.894
256 1.556827e+00 0.924
512 8.035072e-01 0.954
1024 4.086729e-01 0.975
2048 2.060448e-01 0.988
4096 1.034566e-01 0.994
8192 5.184507e-02 0.997
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Inverse problem

In order to test the implicit sensitivity calculation, we employ derivative and adjoint

tests as described in Haber (2015). Given that the Taylor expansion of a function

f (m+h∆m) is

f (m+h∆m) = f (m)+hJ∆m+O(h2), (3.21)

for any of the model parameters considered, we see that our approximation of f (m+

h∆m) by f (m)+ hJ∆m should converge as O(h2) as h is reduced. This allows us to

verify our calculation of Jv. To verify the adjoint, J>v, we check that

w>Jv = v>J>w (3.22)

for any two random vectors, w and v. These tests are run for all of the parameters

considered in an inversion of the Richards equation. Within our implementation, both

the derivative and adjoint tests are included as unit tests which are run on any updates

to the implementation (https://travis-ci.org/simpeg/simpeg).

3.4.2 Comparison to literature

Code-to-code comparisons have been completed for comparison to Celia et al. (1990),

which can be found in Cockett (2017). The following results are a direct comparison

to the results produced by Celia et al. (1990) for the Picard iteration only; Celia et al.

(1990) did not implement the Newton iteration. The direct comparison is completed:

(a) to give confidence to the numerical results; (b) to compare the Newton iteration

to the Picard iteration of the mixed formulation for a well-known example; and (c)

demonstrate the use of multiple empirical models. Here, we use the Haverkamp model

(Haverkamp et al., 1977) (rather than the classically used van Genuchten model) for
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the water retention and hydraulic conductivity functions.

θ(ψ) =
α(θs−θr)

α + |ψ|β
+θr

K(ψ) = Ks
A

A+ |ψ|γ

(3.23)

We used parameters of α = 1.611× 106, θs = 0.287, θr = 0.075, β = 3.96, A =

1.175× 106, γ = 4.74, and Ks = 9.44× 10−5 m/s, which are the same as in Celia

et al. (1990). The 40 cm high 1D soil column has initially dry conditions with a pres-

sure head ψ0(x,0) = −61.5cm. The boundary conditions applied are inhomogeneous

Dirichlet with the top of the soil column, ψ(40cm, t) = −20.7cm, and the bottom of

the soil column, ψ(0cm, t) =−61.5cm. The initial conditions are not consistent with

the boundary condition at the top of the soil profile. This inconsistency leads to a

boundary layer and a steep gradient in the pressure head at early times; as such, we

anticipate that the Newton iteration will converge slowly at these times. The spatial

grid is regular and has a spacing of 1.0cm, while the time-stepping, ∆t, is manipulated.

The three iterative methods described in Section 3.2 are implemented and compared at

360s: (1) head-based form Picard; (2) mixed-form Picard; and, (3) mixed-form New-

ton. Figure 3.4 shows the solution obtained with the three iterative methods. Com-

paring the head-based formulation to the mixed-formulation for a large time-step (e.g.

∆t = 120s) shows the degradation of the head-based method. Not only is the infiltration

front smoothed, there is underestimate of the front location (Figure 3.4a). The under-

estimate of the infiltration front location is due to a loss of mass, which can be traced

back the initial formulation of the head-based method (Celia et al., 1990). The mixed-

formulation, solved with either a Picard iteration or a Newton method, conserves mass

and correctly identifies the spatial location of the infiltration front (Figure 3.4b). The
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results obtained here show excellent agreement with Celia et al. (1990).

Figure 3.4: Comparison of results to Celia et al. (1990) showing the differences
in the (a) head-based and (b) mixed formulations for t=360s.

3.5 Conclusions

The number of parameters that are estimated in the Richards equation inversions has

grown and will continue to grow as time-lapse data and geophysical data integration

become standard in site characterizations. The increase in data quantity and quality

provides the opportunity to estimate spatially distributed hydraulic parameters from

the Richards equation; doing so requires efficient simulation and inversion strategies.

In this chapter, we have shown a derivative-based optimization algorithm that does not

store the Jacobian, but rather computes its effect on a vector (i.e. Jv or J>z). By not

storing the Jacobian, the size of the problem that we can invert becomes much larger.

We have presented efficient methods to compute the Jacobian that can be used for all

empirical hydraulic parameters, even if the functional relationship between parameters

is obtained from laboratory experiments.

Our technique allows a deterministic inversion, which includes regularization, to

be formulated and solved for any of the empirical parameters within the Richards equa-

tion. For a full 3D simulation, as many as ten spatially distributed parameters may be
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needed, resulting in a highly non-unique problem; as such, we may not be able to

reasonably estimate all hydraulic parameters. Depending on the setting, amount of

a-priori knowledge, quality and quantity of data, the selection of which parameters to

invert for may vary. Our methodology enables practitioners to experiment in 1D, 2D

and 3D with full simulations and inversions, in order to explore the parameters that are

important to a particular dataset. Our numerical implementation is provided in an open

source repository (http://simpeg.xyz) and is integrated into the framework presented in

Chapter 2. The goal of Chapter 4 is to work with these techniques in an experiment

that represents a field infiltration experiment. The following chapter will also further

document the scalability of this approach when moving to 3D inversions.
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Chapter 4

Vadose zone inversions

4.1 Introduction

Characterizing hydraulic parameters can be completed using direct methods, which

require laboratory samples to be taken. However, because much of the vadose zone

consists of unconsolidated materials, these invasive measurement techniques may dis-

turb the soil properties, especially porosity and water content (Deiana et al., 2007).

Furthermore, these point measurements may not represent the entire hydrologic setting

and cannot observe the vadose zone processes in situ. Geophysical methods, however,

can be used to generate spatially extensive estimates of physical properties, which can

be related, through empirical relations, to hydrogeologic properties, such as hydraulic

conductivity. We can use geophysical inversions, such as direct current resistivity, to

image the electrical conductivity. The electrical conductivity is related to the soil mois-

ture content and the fluid electrical conductivity. This relation is empirically described
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through Archie’s equation (Archie, 1942):

σ = a−1
σ f φ

m
θ

n
e (4.1)

where σ is the bulk electrical conductivity of the fluid filled soil or rock, σ f is

the electrical conductivity of the fluid, φ is the porosity, and θe is the effective satura-

tion. The exponents, m and n, and scaling factor, a, are empirical fitting parameters,

which are occasionally referred to as the cementation exponent, the saturation expo-

nent, and the tortuosity factor, respectively. Archie’s equation, which must be further

modified in the presence of clays, has three empirical parameters that are either un-

known or poorly constrained. If the imaging for electrical conductivity is completed

in a time-lapse experiment, we can capture changes of moisture content over time

due to fluid movement. In the vadose zone, the moisture content is the time-stepping

term in the Richards equation, which is related to the pressure head through another

empirical relation (e.g. the van Genuchten-Mualem empirical relations). Given esti-

mates of saturation, an inversion can be formulated for hydraulic parameters using the

Richards equation (Chapter 3). The van Genuchten empirical model has five parame-

ters (Ks,θr,θs,α,, and n) that are commonly estimated in laboratory experiments. We

can use these hydraulic parameters in groundwater models to make predictions and

decisions about groundwater processes.

In summary, we can use geophysical measurements to make time-lapse images of

water content, which, in turn, can be used in conjunction with a groundwater sim-

ulation to invert for hydraulic properties (cf. Hinnell et al. (2010)). Throughout this

process, we require multiple empirical parameterizations as well as extensive hydroge-

ologic knowledge, including knowledge of boundary and initial conditions. In Binley
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et al. (2002), a cross-well tomography experiment was conducted using radar and DC

resistivity over the course of a vadose zone tracer test. The center of mass of the tracer

was found and tracked over time using the geophysical imaging and subsequent empir-

ical interpretation as water content changes, ∆θ . A separate groundwater simulation

was completed using the Richards equation to estimate the saturated hydraulic con-

ductivity, which was assumed to be homogeneous and isotropic and was determined

through “trial and error” because “no automatic data matching was possible” due to

the size of the numerical simulation. Similarly, in Deiana et al. (2007), “only the sat-

urated hydraulic conductivity Ks was modified by trial and error to match field data.”

In this case, anisotropy was introduced to further fit the results obtained by match-

ing the infiltration experiment. Similarly, when investigating coupled hydrogeologic

and geophysical simulation, Hinnell et al. (2010) notes that the parameterization was

“simpler than reality to make numerical inversion tractable” and that the computational

power necessary for a stochastic “approach limits widespread application and use of

the hydrogeophysic[s].” The lack of algorithms that formulate and solve the inverse

problem for the Richards equation is a hurdle in the analysis and joint quantitative

analysis of hydrologic and geophysical data. In Chapter 3, we presented a formulation

that reduced a number of these barriers to efficient large-scale parameter estimation.

However, the numerical ability to invert for five distributed parameters at once is not

immediately practical.

In this chapter, we will use the algorithm and formulation of the inverse problem

developed in Chapter 3 to investigate a distributed multi-parameter inversion in both

one and three dimensions using water content data. The goal of this work is: (a) to

explore the nonlinearities and couplings in the van Genuchten functions; and, (b) to

demonstrate that it is now possible to complete an inversion for distributed hydraulic
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parameters in a large-scale 3D simulation. We also refer the reader to Appendix C,

where we expose the assumptions in a forward simulation framework to manipulation

and estimation. This appendix also demonstrates multiple geologic- and physics-based

parameterizations that can be used to embed knowledge between diverse disciplines.

4.1.1 Attribution and dissemination

This work extends the previous chapter in terms of applications, but it also extends

the forward simulation framework and the inversion framework that is necessary to

flexibly invert for multiple distributed parameters at once. We abstracted the necessary

advancements in the framework from the organization and implementation of elec-

tromagnetics inversions in both time domain and frequency domain. The forward

simulation framework used for all numerical examples is derived from this cross-

disciplinary, collaborative work in the Richards equation and electromagnetics. This

work is presented in Heagy et al. (2016) for eight formulations of Maxwell’s equations

for geophysical simulations and inverse problems. Appendix C shows an adaption

of the forward simulation framework for the Richards equation, along with a num-

ber of other collaborative case-studies that build upon or extend this work. The li-

brary for implementing the numerical methods and inverse formulation is contained in

SimPEG.FLOW.Richards (https://github.com/simpeg/simpeg). The code to repro-

duce the the majority of the results and figures in this chapter is available on FigShare

(Cockett and Haber, 2015); the examples are available within the online documen-

tation (http://docs.simpeg.xyz). The numerical examples are inspired by work from

my undergraduate thesis, of which two papers were published during the course of

my PhD (Pidlisecky et al., 2013; Cockett and Pidlisecky, 2014). These examples in-

volved a field site in California designed for managed aquifer recharge, which col-
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lected dense geophysical data to help inform management practices. The two papers’

results showed a qualitative comparison to water content in one dimension (Pidlisecky

et al., 2013) and a numerical rock physics approach that analyzed soils as they clogged

(Cockett and Pidlisecky, 2014). These two studies informed the numerical setup of the

following synthetic experiments.

4.2 Empirical relationships

The Richards equation relies upon the correct parameterization of both the water re-

tention curve and the hydraulic conductivity function. A number of empirical models

have been proposed to describe these functions, including Brooks and Corey (1964),

Haverkamp et al. (1977), van Genuchten (1980), and Mualem (1976). All of these

empirical models are loosely based on the physical interpretation of fitting parameters;

however, this basis can be misleading and it has been shown that many parameters

have no physical meaning and should be considered empirical shape factors (Schaap

and Leij, 2000). These functions have also been interpreted as splines, which can be

helpful in the inverse formulation (Bitterlich and Knabner, 2002). The van Genuchten

model, introduced in Chapter 3, is written as:

θ(ψ) =


θr +

θs−θr

(1+ |αψ|n)m ψ < 0

θs ψ ≥ 0
(4.2a)

k(ψ) =


Ksθe(ψ)l(1− (1−θe(ψ)−m)m)2

ψ < 0

Ks ψ ≥ 0
(4.2b)
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where

θe(ψ) =
θ(ψ)−θr

θs−θr
, m = 1− 1

n
, n > 1 (4.3)

Here, θr and θs are the residual and saturated moisture contents, Ks is the saturated

hydraulic conductivity, α and n are fitting parameters, and θe(ψ)∈ [0,1] is the effective

saturation. The pore connectivity parameter, l, is often taken to be 1
2 , as determined by

Mualem (1976).

These curves are unknown at every point in space in the inverse problem. We will

use a number of canonical parameters for the van Genuchten empirical relation to look

at the water retention curve and the hydraulic conductivity function; Table 4.1 shows

the values for these parameters. The soil-naming scheme refers to the proportions

of sand, silt, and clay. Figure 4.1 shows the functions over a range of negative soil

water potentials for four soil types (sand, loam, sandy clay, and clay). The soil water

potential varies over the domain ψ ∈ (−∞,0). When the value is close to zero (the

left hand side), the soil behaves most like a saturated soil where θ = θs and K = Ks.

As the water potential becomes more negative, the soil begins to dry, which the water

retention curve shows as the function moving towards the residual water content (θr).

The parameters α and n determine the slope and shape of this transition. In Figure 4.1,

we see that the water retention curve for sand has a high saturated water content but

rapidly changes to a low residual water content. For clay, this transition, with respect to

the soil water potential, is much more gradual. This difference has to do with the small

size of the pores in clay and their ability to retain water, even at high suctions. This

difference is reflected in the hydraulic conductivity function: when close to saturated

conditions, sand has the highest hydraulic conductivity, however, as the soil dries, the

hydraulic conductivity of sand decreases rapidly and becomes relatively lower than a
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loam or clay with the same water potential.

Table 4.1: Canonical soil parameters for the water retention and hydraulic con-
ductivity curves (Van Genuchten et al., 1991)

Soil Type θr θs α (1/m) n Ks (m/s)
Sand 0.020 0.417 13.8 1.592 5.8e-05

Loamy sand 0.035 0.401 11.5 1.474 1.7e-05
Sandy loam 0.041 0.412 6.8 1.322 7.2e-06

Loam 0.027 0.434 9.0 1.220 1.9e-06
Silt loam 0.015 0.486 4.8 1.211 3.7e-06

Sandy clay loam 0.068 0.330 3.6 1.250 1.2e-06
Clay loam 0.075 0.390 3.9 1.194 6.4e-07

Silty clay loam 0.040 0.432 3.1 1.151 4.2e-07
Sandy clay 0.109 0.321 3.4 1.168 3.3e-07
Silty clay 0.056 0.423 2.9 1.127 2.5e-07

Clay 0.090 0.385 2.7 1.131 1.7e-07

Figure 4.1: The water retention curve and the hydraulic conductivity function for
four canonical soil types of sand, loam, sandy clay, and clay.

In this chapter, we are interested in the inverse problem for the soil parameters,

which controls the shape and intercepts of these two functions. To solve this problem
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systematically, we will first observe how the shape of these curves change as the empir-

ical parameters are modified over the full empirical range. In Figure 4.2, we complete

this process for the hydraulic conductivity function for the four soil types (sand, loam,

sandy clay, and clay). The bounds show the change from that curve by varying a single

parameter and holding the rest constant. The saturated hydraulic conductivity, Ks, can

move the entire curve up and down. The parameters α and n control the shape of the

curve as the negative soil water potential increases. Figure 4.3 also shows the four

soil types for the water retention curve. As expected in this case, θs controls the y-

intercept and θr controls the minimum value of the function. Again, the parameters α

and n control the shape of the curve between the bounds of θs and θr. In this case, the

parameter n has much the same effect as θr; Šimunek et al. (1998) notes this high cor-

relation. Note that the parameters α and n are involved in both the calculation of k and

θ , which links these two curves in a physically reasonable way (Bitterlich et al., 2004).

Additionally, the low parameterization of these curves, when using the van Genuchten

empirical relationship, means that changing one parameter has a global effect over the

domain of the soil water potential, ψ ∈ (−∞,0). When framing the inverse problem,

a spline parameterization for each curve can alternatively be used. Although fram-

ing in this way decouples the two curves, we need to take care when extrapolating

the results to moisture contents not covered by the bounds of the experiment and to

ensure that the obtained curves are physically reasonable (Bitterlich et al., 2004). To

avoid these potential pitfalls of an inversion, we will use the van Genuchten empirical

parameterization for the remainder of the experimentation.
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Figure 4.2: The hydraulic conductivity function showing bounds of the various
parameters Ks ∈ [1×10−7,1×10−4], α ∈ [2.5,13.5], and n ∈ [1.1,1.6] for
four canonical soil types of (a) sand, (b) loam, (c) sandy clay, and (d) clay.
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Figure 4.3: The water retention function showing bounds of the various param-
eters θs ∈ [0.3,0.5], θr ∈ [0.01,0.1], α ∈ [2.5,13.5], and n ∈ [1.1,1.6] for
four canonical soil types of (a) sand, (b) loam, (c) sandy clay, and (d) clay.

4.2.1 Objective functions

To further explore the van Genuchten parameterizations, we will use a homogeneous

sandy clay loam (Ks: 1.2-06 m/s, α: 3.6 1/m, n: 1.25, θr: 0.068, θs: 0.33) in a small in-

filtration experiment. The boundary conditions on the top of a 40 cm deep soil profile
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are ψ = −5cm at z = 0cm and ψ = −41.5cm at z = −40cm. The Richards equation

simulation is run for a time period of 22 hours with an exponentially increasing time

step from 5 s to 60 s. Saturation data is collected at nine equally spaced locations

from -2 cm to -34 cm. The water content data at each of the nine locations is sampled

23 times over the length of the experiment. This sampling differs from traditionally

collected laboratory experiment data, which records water outflow, distributed pres-

sure measurements (using tensiometers), or bulk soil moisture. The analysis here is

completed with the assumption that distributed estimates of soil moisture are available

from a geophysical method.

In the following sections, we will be estimating the van Genuchten parameters

(Ks,θr,θs,α , and n) from this water content data. In this section, we will visualize the

objective function, l2 norm of the data difference, around the true model to get a sense

of the optimization problem for a homogeneous soil with this data. Even with a homo-

geneous soil, the objective function is in five-dimensional space, so both visualization

and identification of local minima is difficult. Figure 4.4 shows ten profiles through

the objective function. These profiles are created by varying two of the parameters

while keeping all other parameters constant at the true values. A 40× 40 grid, over

reasonable bounds of each parameter, requires 16,000 simulations and produces ten

cross-sections of the five-dimensional space. The cross-sections of θs−Ks, n−Ks,

n− θr, and n−α show well-defined objective functions that are convex along these

planes. The structure of the objective functions for α and n, with respect to θs, shows

a more elongated objective function with contours nearly perpendicular to the θs axis,

which means that, while keeping θs constant in Figures 4.4h and 4.4i, both α and n can

vary over their respective ranges at similar objective function values. In Figure 4.4c, α

can also change while keeping Ks constant at similar objective function values. Mawer
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et al. (2013) also notes low sensitivity to the α parameter when inverting saturation

estimates for homogeneous layers. In this case, we also see the contours of the θr−θs

objective function as perpendicular to the θs axis, which indicates low sensitivity to θr

in this plane of the objective function (Figure 4.4e). In all cases, when θs is involved,

except for the cross-section of θs−Ks, the objective function is elongated perpendic-

ular to the θs axis. This perpendicular elongation means that there is high sensitivity

to θs, which is not surprising given that our data is water content. Additionally, the

boundary conditions of the experiment yield pressure head values in the entire domain

between 10−2m and 100m, which is in the domain where θs has the greatest influence

over the shape of the water content response to pressure head (Figure 4.3).

Figure 4.4: Objective function cross sections plotted for all ten cross sections
through the five dimensional space of Ks,θr,θs,α and n. Each cross section
was simulated with 40× 40 simulations and compared using an l2 data
objective function. The results are shown in log10-scale.

This analysis of the objective function shows that all of the cross-sections around

the global minima are convex (albeit highly elongated in some axes). If local minima
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exist, these are not located on cross sections through the true soil parameters. However,

as seen in Figure 4.2 and 4.3, at a single soil water potential, a change in any parameter

can raise or lower the functions for hydraulic conductivity and water content. If only a

small portion of each curve is examined by the experimental setup (i.e. boundary and

initial conditions and measurement locations), then the recovery of these parameters

will be non-unique. In the following sections, we will release the assumptions of a

homogeneous soil and investigate the recovery of distributed soil parameters in a one-

dimensional soil profile.

4.3 Layered soil profile

In this section, we will investigate our ability to recover the van Genuchten parameters

of a layered soil. The general setup of this experiment continues to expand on the 40

cm deep soil profile examined in the previous section. In this case, however, we break

up the soil profile into three layers: (1) silt loam from 0 cm to -15 cm; (2) loam from

-15 cm to -25 cm; and, (3) sandy clay loam from -25 cm to -40 cm. Table 4.1 shows

the values for the van Genuchten curves. Figure 4.5 shows the pressure head and water

content fields as an image of the 1D soil profile over the length of the experiment. The

boundary conditions are set to inhomogeneous Dirichlet with values of -5 cm at the top

of the model and -41.5 cm at the bottom of the model. The infiltration front is observed

as a pressure increase moving down through the soil profile. The pressure head field

is continuous across layer boundaries, as is expected. We can translate the pressure

head everywhere in time and space to a saturation profile over time using the known

spatially heterogeneous van Genuchten parameters (Figure 4.5b). The most notable

difference is the discontinuity between layers, which is mostly due to the differences

in θs, although the parameters α and n and, to a lesser extent, θr, also influence these
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discontinuities. This figure shows the infiltration front as an increase in soil water

content, which corresponds to the increase in pressure head. We end the experiment

when the infiltration front reaches the bottom of the soil profile at 22 hours. The water

content figure shows the measurement locations as equally spaced samplings from -2

cm to -34 cm. We took the measurements over the entire time-lapse experiment, as

seen in Figure 4.6. There were 225 measurements for the entire experiment. We added

1% noise to the synthetic data, which the figure shows as dobs. This noise is far below

what can be expected in any geophysical recovery of the water content; however, by

adding more noise, we must conversely reduce our expectations of recovering the true

distributions. In this experiment, we are interested in what is possible to recover under

the best of circumstances.

4.4 Unconstrained joint inversion

To recover the van Genuchten parameters of Ks,θr,θs,α , and n, we will frame the

problem as an unconstrained joint inversion for all parameters at once. This framing

requires that the model, m, contains all five parameters for every cell in the model

and, in this case, has a length of 200. To get the model for hydraulic conductivity,

for example, we use a 40×200 projection matrix to select the appropriate rows of the

model vector.

mKs = PKsm

We can also complete other model parameterizations at this stage to embed other

knowledge (Appendix C). For example, we expect the hydraulic conductivity to be

logarithmically varying, so a model of log(Ks) can be created. This mapping, as well
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Figure 4.5: Fields from the numerical simulation of a layered one dimensional
soil profile, showing (a) pressure head and (b) water content over the full
time period. The soil types are shown as annotations on each figure, the
spatial location of water content measurements are shown adjacent to the
water content fields.

as the projection, must be taken care of in both the translation to the physical property

values and the derivative. The entire mapping can be represented as p=M (m), where

p is the parameter that is mapped from the model, m. In the previous chapter, we only

addressed the model derivative, with respect to saturated hydraulic conductivity. In

this chapter, we also require the derivative of the water content curve as well as the

derivatives with respect to each parameter in the van Genuchten relationships. The

derivative for the water content curve requires attention in both the time stepping terms

and in the conversion of the pressure head field to water content for inclusion in the

measurement locations.
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The inversion for all van Genuchten parameters at once can be written as a sum of

weighted objective functions:

argmin
m

Φ(m) =
1
2

∥∥Wd(dpred(m)−dobs)
∥∥2

2+

β

2 ∑
{·}=Ks, α, n, θs, θr

(
α{·}

∥∥∥Wm{·}(M{·}(m)−mref{·})
∥∥∥2

2

) (4.4)

Here, Wm refers to both model smoothness and smallness for each mapped param-

eter. The mref can be chosen independently for each parameter. The α{·} weightings

have significant influence on the inversion; a poor choice of weighting can cause the

optimization of the objective function to not converge. We chose the weightings for the

inversion results presented by looking at the relative magnitudes of the model resolu-

tion matrix (J>J) around the starting model, (m0). The objective function weights that

we used in this inversion were approximately the average sensitivity over the entire

soil profile: Ks=1e-3; θr=1; θs=1; α=1e2; and, n=5e3. The β parameter was chosen

by relatively weighting the data misfit and model regularization terms at 1:100 based

on a coarse estimate of the major eigenvalue of each inversion component. We used

a cooling schedule for β that reduced β by a factor of five every three iterations. The

starting model used was a soil with the parameter values of the middle layer of the

model: a loam, with the exception of the α parameter, that was set to an initial value

of six, which was the midpoint of the values presented in Table 4.1. We optimized the

objective function with an inexact Gauss-Newton algorithm that used five conjugate

gradient iterations for each step in the inversion. The data misfit function started with

a value of 2.8e4, which was reduced two orders of magnitude to the target misfit of

113. The inversion took 117 iterations; however, the majority of the decrease in the

objective function occurred in the first 25 iterations of the inversion, which decreased
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the misfit to below 200.

4.4.1 Results

Figure 4.6 shows the predicted data for this unconstrained joint inversion for all spa-

tially heterogeneous parameters, which has a good visual fit to the the observed data.

This figure shows all of the locations and times in a single figure. There are three sat-

uration measurements in the top and bottom layers and two in the middle layer. Over

the course of the infiltration experiment, we can differentiate these saturation profiles

by the time at which the infiltration front causes an increase in the water content of the

soil.

Figure 4.6: Observed and predicted water content data from the one dimensional
infiltration experiment showing water content over time.

Figure 4.7 shows the hydraulic conductivity and water retention curves. We al-

lowed each parameter in the van Genuchten curves to vary spatially as shown in Fig-
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ure 4.8. However, for visualization purposes, Figure 4.7 uses the average value for each

parameter type in each layer to calculate the hydraulic conductivity and water retention

curves. The amount of the curve that was interrogated by the infiltration experiments

is important to consider. As such, the figure also shows the true pressure head values

in the entire layer as a normalized histogram. Information about the curves, outside

the bounds of the experiment, will likely be poorly estimated. The curves for hydraulic

conductivity in the first two layers were well-recovered for the entire domain of pres-

sure head values. Similarly, the water retention curves were well-recovered over the

domain of the experiment, as seen in Figures 4.7d and 4.7e. However, outside the pres-

sure head bounds imposed by the experimental setup, which are shown as histograms,

the water retention curves were not fit well for pressure head values less than -1.0

m. The recovered curve over-estimated the water content in the top layer and under-

estimated it in the middle layer. The third layer was the last to see the effect of the in-

filtration event and most of the experiment exposed this layer to approximately -0.5 m

of pressure head. The recovered curves for the hydraulic conductivity curve are shown

in Figure 4.7c, which overestimates the hydraulic conductivity by nearly an order of

magnitude at −ψ = 10−2m. Figure 4.7f shows the predicted curve for water reten-

tion. Here, the water content is over-estimated at−ψ = 10−2m and under-estimated at

−ψ = 102m. The location where the layer was sampled was well-recovered and this is

seen as the intercept between the true and the predicted models at −ψ = 0.5m, which

is the peak of the histogram. In summary, the curves were relatively well-recovered in

the first two layers, where the pressure head changed by an order of magnitude over the

course of the infiltration experiment. Outside these bounds, the water retention curves

were less well-recovered, but the hydraulic conductivity showed a good match. The

third layer, however, was not matched well and, outside the bounds of the experiment,
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the curves for both hydraulic conductivity and water retention were poorly-recovered.

Figure 4.7: Showing the water retention and hydraulic conductivity curves for
the true and predicted models for the three soil layers. The histogram in
each plow shows the distribution of true pressure head values in each layer.

Figure 4.8 shows the spatially varying van Genuchten parameters through depth.

Blue marks the true model parameters and green marks the recovered model parame-

ters at the target misfit. The figure also shows all of the model iterations as thin grey

lines of increasing opacity. In Figure 4.8b, the recovered values for θs appear to fit in

the first few iterations of the inversion. The saturated water content in the top layer is

recovered to within 0.012 of the true value; the second layer was also well-recovered,

with a maximum difference from the true value of 0.016 for the values inside the layer.

The saturated water content in the third layer over-estimated the true value by 0.046.

The residual water content for all three layers did not move far from the initial esti-

106



mate and did not recover the difference in the final layer, but underestimated the third

layer by 0.040. The majority of the experiment exposed the soil profile to pressures

that were between −ψ = 10−2m and −ψ = 100m, which is outside the domain where

θr influences the water retention curve, as seen in Figure 4.3. In Figure 4.8d, the α

parameter did not change from the initial chosen value of 6.0, except in the loam layer

where there is a slight increase towards the known value of 9.0. This can be expected

from the analysis of the objective functions in Figure 4.4, where α could change over

a large range without changing the objective function. Figure 4.8a shows the saturated

hydraulic conductivity estimate for the soil profile. The Ks estimate shows the layer-

ing of the soil profile, which can lead to other parameterization techniques, as we will

see in the next section. The top layer is overestimated by up to a 0.34 in log10-space,

the second layer is underestimated by 0.47 in log10-space, and the third layer overes-

timates Ks by up to an order of magnitude, 0.98 in log10-space. The n parameter is

underestimated in the top layer by a maximum of 0.030, in the second layer n is over-

estimated by a maximum of 0.072, and is slightly overestimated by 0.019 in the third

layer.

The parameters estimated by this method demonstrate that the data can be fit by a

local minima; that is, multiple values of Ks−n−α can sufficiently minimize the water

content data provided. Figure 4.9 further highlights this through the plotting of the

fields from the recovered model. As expected, the water content field matches the true

fields in Figure 4.5, which contains the data that was recorded and fit. There are some

oscillations in the top layer due to the estimate of θs; these were added in the final

iterations of the optimization and could be considered over-fitting of the inversion. We

constructed the data from linear interpolation of the closest two cells; the sensitivity

to model parameters outside of this interpolation is up to three orders of magnitude
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Figure 4.8: The true and recovered soil parameters as a function of depth, show-
ing (a) hydraulic conductivity; (b) residual and saturated water content; (c)
the empirical parameter n; and (d) the empirical parameter α . Each plot
also shows the full inversion history of the predicted model as a transparent
black line.

108



lower. When considering a geophysical estimation of water content, the ‘footprint’

of this estimate should be experimented with because the geophysical estimate is an

integration over a certain volume of the soil rather than a point estimate, as is assumed

here. Comparing to the true fields for the third layer, the water content profile is well-

estimated; however, the pressure head recovery has a completely different character.

The middle of the bottom layer reaches a maximum pressure head of -16 cm rather than

-27 cm in the true model. Considering that the pressure head range of the experiment

was 36.5 cm, this estimate was off by 30.1%; this further shows that only collecting

saturation data, especially over a small range of pressure heads, can lead to inaccurate

results in both the van Genuchten parameters recovered and the pressure head field.

4.4.2 Discussion

The recovery of θs is the most robust in the infiltration experiment considered because

the majority of the data was collected when the soil was close to saturation. At these

pressure head values, θs has the greatest control over the van Genuchten water retention

curve. We can recover the layering in the system from the saturation data, which

can lead to other parameterizations of the model space and exploration of other a

priori data to be included. The hydraulic conductivity curves for the first two layers

were well-recovered within half an order of magnitude. However, there is a trade-off

between Ks and n, which could not be isolated over the small pressure ranges that we

used for this simulation. We found low sensitivity to α over the range of pressure heads

investigated, as Mawer et al. (2013) has previously observed. We found a local minima

across the Ks, n, and α parameters. The coverage of a large range (several orders

of magnitude) of pressure head values is important for extrapolating the hydraulic

conductivity curve and, especially, the water retention curve. Most field studies that
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Figure 4.9: Recovered simulation fields from the unconstrained joint inversion
for van Genuchten parameters. Showing (a) the pressure head and (b) the
water content over the full time period of the one dimensional recovered
soil profile. The soil types are shown as annotations on each figure, the
spatial location of water content measurements are shown adjacent to the
water content fields.

use geophysical data to estimate water content will likely see changes of only a few

orders of magnitude. However, if only a small portion of the curve is interrogated in the

experiment, data can be fit with incorrect van Genuchten parameters. The domain of

the curves that is interrogated should be reported with any estimate of van Genuchten

parameters. Furthermore, the addition of pressure head data will be advantageous to

the joint inversion presented, as it will reduce non-uniqueness in the water retention

model for estimating the pressure head field.
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4.5 Three dimensional inversion

In this section, we turn our attention to recovering a three-dimensional soil structure

given water content data. The example, motivated by a field experiment introduced in

(Pidlisecky et al., 2013), shows a time-lapse electrical resistivity tomography survey

completed in the base of a managed aquifer recharge pond. The goal of this man-

agement practice is to infiltrate water into the subsurface for storage and subsequent

recovery. Such projects require input from geology, hydrology, and geophysics to map

the hydrostratigraphy, to collect and interpret time-lapse geophysical measurements,

and to integrate all results to make predictions and decisions about fluid movement at

the site. As such, the hydraulic properties of the aquifer are important to character-

ize, and information from hydrogeophysical investigations has been demonstrated to

inform management practices (Pidlisecky et al., 2013). We use this context to motivate

both the model domain setup of the following synthetic experiment and the subsequent

inversion.

For the inverse problem solved here, we assume that time-lapse water-content in-

formation is available at many locations in the subsurface. In reality, water content

information may only be available through proxy techniques, such as electrical resis-

tivity methods. These proxy data can be related to hydrogeologic parameters using

inversion techniques based solely on the geophysical inputs (cf. Mawer et al. (2013)).

For the following numerical experiments, we do not address complications in empiri-

cal transformations, such as Archie’s equation (Archie, 1942). The synthetic numerical

model has a domain with dimensions 2.0 m × 2.0 m × 1.7 m for the x, y, and z di-

mensions, respectively. The finest discretization used is 4 cm in each direction. We

use padding cells to extend the domain of the model (to reduce the effect of boundary
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conditions in the modelling results). These padding cells extend at a factor of 1.1 in

the negative z direction. We use an exponentially expanding time discretization with

40 time steps and a total time of 12.3 hours. This choice in discretization leads to a

mesh with 1.125×105 cells in space (50× 50× 45). To create a three-dimensionally

varying soil structure, we construct a model for this domain using a three-dimensional,

uniformly random field, ∈ [0,2], that is convolved with an anisotropic smoothing ker-

nel for a number of iterations. We create a binary distribution from this random field

by splitting the values above and below unity. Figure 4.10 shows the resulting model,

which reveals potential flow paths. We then map van Genuchten parameters to this

synthetic model as either a sand or a loamy-sand. The van Genuchten parameters for

sand are: Ks: 5.83e-05m/s, α: 13.8, θr: 0.02, θs: 0.417, and n: 1.592; and for loamy-

sand are: Ks: 1.69e-05m/s, α: 11.5, θr: 0.035, θs: 0.401, and n: 1.474. For this

inversion, we are interested in characterizing the soil in three dimensions.

4.5.1 Results

For calculation of synthetic data, the initial conditions are a dry soil with a homo-

geneous pressure head (ψ = −30cm). The boundary conditions applied simulate an

infiltration front applied at the top of the model, ψ =−10cm ∈ δΩtop. Neumann (no-

flux) boundary conditions are used on the sides of the model domain. Figure 4.13

shows the pressure head and water content fields from the forward simulation. Fig-

ure 4.11a and 4.11b show two cross-sections at time 5.2 hours and 10.3 hours of the

pressure head field. These figures show true soil type model as an outline, where the

inclusions are the less hydraulically-conductive loamy sand. The pressure head field

is continuous across soil type boundaries and shows the infiltration moving vertically

down in the soil column. We can compute the water content field from the pressure
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Figure 4.10: Soil structure in three dimensions showing the boundary between
two soil types of sand and loamy sand.

head field using the nonlinear van Genuchten model chosen; Figure 4.11c and 4.11d

show this computation at the same times. The loamy sand has a higher relative water

content for the same pressure head and the water content field is discontinuous across

soil type boundaries, as expected.

The observed data, which will be used for the inversion, is collected from the water

content field at the points indicated in both Figure 4.11c and 4.11d. The sampling
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Figure 4.11: Vertical cross sections through the pressure head and saturation
fields from the numerical simulation at two times: (a) pressure head field
at t = 5.2 hours and (b) t = 10.3 hours; and (c) saturation field at t = 5.2
hours and (d) t = 10.3 hours. The saturation field plots also show mea-
surement locations and green highlighted regions that are shown in Fig-
ure 4.12. The true location of the two soils used are shown with a dashed
outline.

location and density of this three-dimensional grid within the model domain is similar

to the resolution of a 3D electrical resistivity survey. Our implementation supports

data as either water content or pressure head; however, proxy water content data is

more realistic in this context. Similar to the field example in (Pidlisecky et al., 2013),

we collect water content data every 18 minutes over the entire simulation, leading to

a total of 5000 spatially and temporally extensive measurements. The observed water

content data for a single infiltration curve is plotted through depth in Figure 4.12. The

green circles in Figure 4.11 show the locations of these water content measurements.
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The depth of the observation is colour-coded by depth, with the shallow measurements

being first to increase in water content over the course of the infiltration experiment. To

create the observed dataset, dobs, from the synthetic water content field, 1% Gaussian

noise is added to the true water content field. This noise is below what can currently be

expected from a proxy geophysical measurement of the water content. However, with

the addition of more noise, we must reduce our expectations of our ability to recover

the true parameter distributions from the data. In this experiment, we are interested in

examining what is possible to recover under the best of circumstances, and therefore

have selected a low noise level.

Figure 4.12: Observed and predicted data for five measurements locations at
depths from 10cm to 150cm from the center of the model domain.
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For the inverse problem, we are interested in the distribution of soil types that fits

the measured data. We parameterize these soil types using the van Genuchten em-

pirical model (4.2) with as least five spatially distributed properties. Inverting for all

5.625×105 parameters in this simulation with only 5000 data points is a highly under-

determined problem, and thus there are many possible models that may fit those data.

In this 3D example, we will invert solely for saturated hydraulic conductivity and as-

sume that all other van Genuchten parameters are equivalent to the sand; that is, they

are parameterized to the incorrect values in the loamy sand. Note that this assumption,

while reasonable in practice, will handicap the results, as the van Genuchten curves

between these two soils differ. Better results can, of course, be obtained if we assume

that the van Genuchten parameters are known; this assumption is unrealistic in prac-

tice, which means that we will not be able to recreate the data exactly. However, the

distribution of saturated hydraulic conductivity may lead to insights about soil distri-

butions in the subsurface. Figure 4.13 shows the results of the inversion for saturated

hydraulic conductivity as a map view slice at 66 cm depth and two vertical sections

through the center of the model domain. The recovered model shows good correla-

tion to the true distribution of hydraulic properties, which is superimposed as a dashed

outline. Figure 4.12 shows the predicted data overlaid on the true data for five water

content measurement points through time; these data are from the center of the model

domain and are colour-coded by depth. As seen in Figure 4.12, we do a good job of

fitting the majority of the data. However, there is a tendency for the predicted infiltra-

tion front to arrive before the observed data, which is especially noticeable at deeper

sampling locations. The assumptions put on all other van Genuchten parameters to act

as sand, rather than loamy sand, lead to this result.
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Figure 4.13: The 3D distributed saturated hydraulic conductivity model recov-
ered from the inversion compared to the (a) synthetic model map view
section, using (b) the same map view section, (c) an X-Z cross section
and (d) a Y-Z cross-section. The synthetic model is show as an outline
on all sections, and tie lines are show on all sections as solid and dashed
lines, all location measurements are in centimeters.

4.5.2 Scalability of the implicit sensitivity

For the forward simulation presented, the Newton root-finding algorithm took 4-12

iterations to converge to a tolerance of 1× 10−4m on the pressure head. The inverse

problem took 20 iterations of inexact Gauss-Newton with five internal CG iterations

used at each iteration. The inversion fell below the target misfit of 5000 at iteration 20

with φd = 4.893×103; this led to a total of 222 calls to functions to solve the products

Jv and J>z. Here, we again note that the Jacobian is neither computed nor stored

directly, which makes it possible to run this code on modest computational resources;

this is not possible if numerical differentiation or direct computation of the Jacobian is
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used. For these experiments, we used a single Linux Debian Node on Google Compute

Engine (Intel Sandy Bridge, 16 vCPU, 14.4 GB memory) to run the simulations and

inversion. The forward problem takes approximately 40 minutes to solve. In this

simulation, the dense Jacobian matrix would have 562.5 million elements. If we used

a finite difference algorithm to explicitly calculate each of the 1.125e5 columns of

the Jacobian with a simple forward difference, we would require a calculation for each

model parameter – or approximately 8.5 years of computational time. Furthermore, we

would need to recompute the Jacobian at each iteration of the optimization algorithm.

In contrast, if we use the implicit sensitivity algorithm presented in Chapter 3, we can

solve the entire inverse problem in 34.5 hours.

Table 4.2: Comparison of the memory necessary for storing the dense explicit
sensitivity matrix compared to the peak memory used for the implicit sensi-
tivity calculation excluding the matrix solve. The calculations are completed
on a variety of mesh sizes for a single distributed parameter (Ks) as well as
for five distributed van Genuchten model parameters (Ks,α,n,θr, and θs).
Values are reported in gigabytes (GB).

Explicit Sensitivity Implicit Sensitivity
Mesh Size 1 parameter 5 parameters 1 parameter 5 parameters

32×32×32 1.31 6.55 0.136 0.171
64×64×64 10.5 52.4 0.522 0.772

128×128×128 83.9 419 3.54 4.09

Table 4.2 shows the memory required to store the explicit sensitivity matrix for

a number of mesh sizes and contrasts them to the memory required to multiply the

implicit sensitivity by a vector. These calculations are modifications on the example

presented above and use 5000 data points. The memory requirements are calculated

for a single distributed parameter (Ks) as well as five spatially distributed parameters

(Ks,α,n,θr, or θs). Neither calculation includes the memory required to solve the

matrix system, as such, the reported numbers underestimate the actual memory re-
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quirements for solving the inverse problem. The aim of this comparison is to demon-

strate how the memory requirements scale, an appropriate solver must also be chosen

for either method to solve the forward problem. When using an explicitly calculated

sensitivity matrix to invert for additional physical properties, the memory footprint in-

creases proportionally to the number of distributed physical properties; this is not the

case for the implicit sensitivity calculation. For example, on a 128×128×128 mesh,

the explicit formation of the sensitivity requires 419 GB for five spatially distributed

model parameters, which is five times the requirement for a single distributed model

parameter (83.9 GB). For the implicit sensitivity on the same mesh, only 4.09 GB of

memory is required, which is 1.2 times the requirement for a single distributed model

parameter (3.54 GB). For this mesh, inverting for five spatially distributed parameters

requires over 100 times less memory when using the implicit sensitivity algorithm,

allowing these calculations to be run on modest computational resources.

4.5.3 Discussion

In the context of managed aquifer recharge, small variations in soil types can cause

differences in infiltration rates. Geophysical data that is both spatially and temporally

dense can act as a proxy for water content (cf. Pidlisecky et al. (2013)). If hydraulic

properties are identified or even spatially delineated, this knowledge can inform and

influence management decisions (e.g. where and when to till or dredge a pond to in-

crease infiltration rates). The hydraulic properties determining these infiltration rates

are distributed in three dimensions. The inversion presented above demonstrated a

large-scale inversion for a 3D distribution of saturated hydraulic conductivity. We

fixed the other van Genuchten parameters at values for sand and, as such, the inversion

had difficulty fitting late time data in the deeper profile. The inversion qualitatively dis-
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criminated between the two geologic units. In this experimentation, we assumed that

the initial conditions and boundary conditions were known. This knowledge may be

possible in a heavily monitored situation, such as managed aquifer recharge where the

pond water height and underlying water table are measured. Further investigation into

the conceptualization of the groundwater simulation is important to both the hydro-

geologic modelling and any coupling to geophysical methods (Hinnell et al., 2010).

The inversion at this scale is computationally possible due to the formulation of the

Richards equation presented in Chapter 3 and the implementation both extended and

tested the geophysical inversion framework presented in Chapter 2.

4.6 Integrations

The combination of the Richards equation with geophysical responses has been laid

out in Hinnell et al. (2010); this includes both directly coupled and uncoupled forms of

integrating information. As presented in Hinnell et al. (2010), uncoupled integrations

are completed by: (a) using the geophysical data to estimate a physical property, such

as electrical conductivity; (b) using an empirical relation, such as Archie’s equation,

to transform the geophysical estimate into a hydrological parameter, such as water

content; and, (c) using hydrological estimates to help inform or test a hydrogeologic

simulation. In contrast, a coupled inversion uses geophysical data to directly inform

the hydrogeologic simulation through stochastic or deterministic parameter estimation

(Finsterle and Kowalsky, 2008; Ferré et al., 2009). We can find increasing instances

of these sorts of collaborations and studies in near surface hydrogeophysics (cf. Linde

and Doetsch (2016) and references within). As data sizes and numerical domains

continue to grow, the relatively few parameters that can be estimated by stochastic in-

versions may not be sufficient. Alternatively, deterministic inversions can be used, but
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will need to draw on improvements across the field of geophysical inverse problems.

For example, regularization techniques using fuzzy c-means clustering, developed in

other areas of geophysics, have potential to be helpful in introducing known parameter

distributions into the Richards equation inversion (Paasche and Tronicke, 2007; Sun

et al., 2012). In Hinnell et al. (2010), the authors conclude that, “the coupled approach

[for hydrogeophysics] requires that the hydrologic and geophysical models be merged,

[which] forces the hydrologist and the geophysicist to formulate a consistent frame-

work,” which would require “an uncommon level of collaboration during scientific

analysis”.

A consistent framework was proposed in Chapter 2; however, to both advance

leading research and disseminate leading practice, the integration and arbitrary combi-

nation of physical simulations must also be possible while simultaneously calculating

derivatives efficiently. Appendix C presents a brief introduction to this collaborative

work, as well as several case studies that are striving towards a general formulation.

The framework presented in Chapter 2 has been extended to: (a) explicitly expose

assumptions in the forward simulation framework to interrogation and inversion; (b)

compose custom objective functions, including regularization and multi-physics data

objective functions; and, (c) provide extensible parameterizations that are flexible for

custom inclusion of a priori knowledge. This is ongoing, collaborative work.

4.7 Conclusions

The joint inversion of various hydraulic parameters was explored on a layered 1D soil

profile. The water content data was well fit and the soil layers were delineated. Ad-

ditionally, the van Genuchten curves that were used as the empirical relations were

also well recovered over the range of pressure head values that each layer of the soil
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profile was exposed to over the experiment. Outside of these ranges, the curves were

not reliably recovered. As such, the numeric values of the van Genuchten parameters

were occasionally unreliable, especially if pressure head was relatively constant, as

was the case in the third layer. In this experiment, the water content data was con-

sidered as a point measurement, and the sensitivity of the recovered model varied by

orders of magnitude between voxels that were included in that measurement and im-

mediate voxel neighbours. This lead to some artificial layering in the recovered model

which was not compensated for by the regularization. The footprint of the water con-

tent measurement is likely an integration over a number of voxels, especially if coming

from a geophysical estimate, and should be considered and experimented with.

As geophysics is more regularly included in hydrogeology parameter estimation

the number of distributed parameters that will be necessary to estimate will increase by

several orders of magnitude. The final example in this chapter showed a 3D recovery

of a distributed hydraulic parameter (Ks). This inversion would not have been possible

through standard finite difference techniques and was significantly more memory effi-

cient than an automatic differentiation algorithm that explicitly forms the Jacobian (up

to two orders of magnitude in some cases). These improvements allowed the Richards

equation inversion to be run on modest computational resources. The coupling, nesting

or otherwise integrating of various geophysical methods with the Richards equation is

an obvious extension to this work. This has been extensively explored by several au-

thors, albeit at a smaller scale (cf. Linde and Doetsch (2016) and references within).

Appendix C briefly explores various types of integrations between various geophysical

methodologies as well as custom model conceptualizations that will be necessary for

these integrations.
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Chapter 5

Conclusions

Forward and inverse modelling in geophysics requires solving and optimizing large-

scale partial differential equations. Thus, many components including linear algebra,

optimization routines, discretizations, and model conceptualizations, are required to

interact. Advances in instrumentation, the monitoring of time-lapse processes, and ac-

quisition of multiple geophysical and hydrologic data types are driving a need for a

more integrated geoscience approach. This includes integrating information through

multiphysics simulations and coupled geophysical inversions. In addition to recover-

ing 3D models, geophysics is increasingly being used in time-lapse imaging of fluid

flow processes, requiring both computational scalability to 4D inverse problems and

interdisciplinary collaborations. There have been significant advances in the past three

decades in computational geophysics; researchers are now able to both simulate and

invert almost any geophysical method in three dimensions (cf. Oldenburg (2016)). One

of the major challenges ahead of geophysics as a discipline is how to systematically

improve the quantitative interfaces and integrations between hydrological, geophysi-

cal, and geological information and processes. The research necessary to address these
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challenges will require the interdisciplinary community to build upon, as well as aug-

ment, standard practices; this presupposes that researchers have access to consistent

methodologies that can be extended, adapted, and combined.

Adapting interdisciplinary methodologies to geophysical simulations and inver-

sions inherently requires that a diverse suite of methods and applications be considered

across hydrogeology, geophysics, and geology. Throughout this work, my colleagues

and I have tried to summarize and/or reproduce many methodologies in the geophysi-

cal inversion literature. Other communities, such as astrophysics and machine learning

(Astropy Collaboration et al., 2013; Pedregosa et al., 2011) have organized these ef-

forts and research communities around open, accessible, and actionable ideas. Adapt-

ing these learnings to geoscience, I strive to complete all of my research such that it is

immediately reproducible and openly available.

Much of my dissertation required the development of software, which is implemen-

tation and engineering by its nature. However, the software, although extremely useful,

is not the aim of my research. If the goal is a framework for quantitative geoscience

integration, a simplistic, high level conceptualization is easy to present. However, a

picture or a paragraph describing a framework cannot be tested, interrogated, nor used

beyond its static form. Software is the means by which I test, extend, organize, and

abstract inherently computational ideas in a rigorous, scientific way. The aim of my

research is to identify, explore, and formalize a framework for simulation and param-

eter estimation in geophysics. I applied this framework to vadose zone flow and, with

the help of collaborators, to several other geophysical methodologies.
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5.1 Contributions and dissemination

The conclusions from each component of my thesis are contained within each chap-

ter and each appendix. However, the central aim of my dissertation was to develop a

framework for geophysical inversions: this has been disseminated through three publi-

cations (Cockett et al., 2017; Heagy et al., 2016; Cockett et al., 2015c), four extended

abstracts (Heagy et al., 2014; Kang et al., 2015a; Heagy et al., 2015c, 2017), over

twenty conference presentations, and a dedicated international workshop1. Further-

more, this framework has demonstrated value in several new research areas, method-

ologies, and case studies (cf. Kang et al. (2017a); Miller et al. (2017); Kang and

Oldenburg (2016); Rosenkjaer et al. (2016)). Overall, the contributions of my thesis

are twofold:

1. a conceptual organization and synthesis of geophysical simulations and inver-

sions into a framework that has been rigorously, numerically tested; and

2. an algorithm for large-scale vadose zone parameter estimation for any distributed

hydraulic parameter, regardless of the empirical relationship used.

One outcome of a framework approach is the accelerated transfer of ideas from one

discipline to another. For example, the implicit sensitivity calculation for the Richards

equation (Cockett et al., 2017) was heavily inspired by research completed in time-

domain electromagnetics simulations and inversions (Heagy et al., 2016). The refine-

ment and application of this algorithm to hydrology significantly improved numerical

scalability for the 3D inverse problem. Chapter 4 showed significant improvements in

memory over explicitly forming the sensitivity matrix by over two orders of magnitude

1At the Banff International Research Station, see http://www.birs.ca/events/2016/2-day-workshops/
16w2695
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for the example shown, bringing this inversion into the range of possibility on mod-

est computational resources. Additionally, the complexities of the Richards equation

were generalized and synthesized to improve other geophysical methods in the frame-

work. These improvements were especially demonstrated with regard to dealing with

multiple physical properties that may or may not be estimated and occur in distributed

empirical relations throughout the forward simulation framework.

The framework presented is designed to decouple concerns and expose well-defined

interfaces between the many components necessary in geophysical simulations and in-

versions. Chapter 4 and Appendix C showed many demonstrations of these ideas, for

example: (a) exposing model conceptualization that are decoupled from the sensitiv-

ity calculation allows custom, parameterized inversions to be completed by combining

various, predefined mappings; (b) the declarative interface of differential operators

and derivatives is decoupled from the structure and type of mesh, which allows the

physics to be written once and used across many types of meshes; or (c) the decou-

pling of the physics from the definition of the geophysical survey, which allows many

types of geophysical surveys to be combined with a single physical problem (e.g. in

electromagnetics) or conversely different approximations of a physical problem (e.g.

dimensionality) to be combined with a single survey. Given the number of choices in

geophysical simulations and inversions this type of combinatorial, decoupled approach

could provide significant acceleration to the unique geoscience integration problems

of the future.

5.1.1 Software

The conceptual organization developed could not have been created without the aid

of software. Furthermore, even if it were, it would be of limited utility, difficult, or
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impossible to validate, and would not make significant progress towards sustained,

reproducible, quantitative geoscience integrations. It is not until a framework is im-

plemented and tested from a number of non-overlapping geoscience perspectives that

the assumptions, inconsistencies, or redundancies come to light and are available to

interrogation. The main software package that was, and continues to be, developed is

SIMPEG (https://github.com/simpeg/simpeg), which defines the framework and hosts

a collection of other geophysical methods written by many collaborators across six

universities. Currently there are methods for: vadose zone flow (Cockett et al., 2017),

direct current resistivity and induced polarization (Kang and Oldenburg, 2016), time-

domain and frequency-domain electromagnetics (Heagy et al., 2016), magnetotellurics

(Rosenkjaer et al., 2016), magnetics and gravity (Fournier et al., 2016; Miller et al.,

2017), and a number of example linear inverse problems. Many of these geophysical

methods also have different formulations (e.g. integral equation, differential equation,

etc.), dimensionalities (e.g. 1D, 2.5D, 3D), and survey components (e.g. sources and

receivers). All software is disseminated with the MIT license to encourage permis-

sionless innovation.

5.2 Outlook and continuing work

This thesis constructed a preliminary organization and synthesis of simulations and

deterministic inversions in a few subdisciplines of geophysics and hydrogeology. This

conceptual framework and computational implementation has demonstrated utility in

advancing current and future research, however, caveats and qualifiers abound.

Some of the more intricate parallel algorithms (e.g. stochastic optimization) would

require updates to the implementation and framework; a lack of these scalable parallel

algorithms is limiting when tackling problems with many sources (e.g. airborne elec-
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tromagnetics). There is still significant work to do in coupling and nesting various geo-

physical problems in a robust way. Due to the current focus on enabling researchers,

the framework offers little in high-level interfaces to inversions that are typical of black

box industry use (i.e. data in, model out). Regardless of these shortcomings, many of

my colleagues rely upon and extend this framework and implementation in their day

to day research. My goal was to accelerate their work and connect their research to a

community of collaborators who are explicitly working towards common goals.

This thesis is positioned from a perspective of looking out to a future of multidis-

ciplinary, multi-data-type, quantitatively integrated geoscience simulations and inver-

sions. A future where joint, cooperative, coupled, parameterized, multiphysics inver-

sions and simulations are the norm rather than the exception. Where multiple existing,

robust, and computationally-efficient methodologies are combined to extract all possi-

ble information from disparate geoscience datasets. To realize this sort of ubiquitous,

quantitative communication between disciplines and methodologies requires an orga-

nized and integrated community that can effectively work together. My research is

aimed here. This future will not be realized by one person nor by one research group.

In the field of machine learning, Olah and Carter (2017) note that “[t]he maintain-

able size of the field is controlled by how its members trade off the energy between

communicating and understanding.” The curation of ideas is just as important as their

creation. There is a research debt created by an exclusive focus on research novelty;

future advances also require distillation, synthesis, and explicit communication. There

is a significant amount of effort ahead of us to achieve effective communication and

collaboration with our geoscience peers in geology and hydrogeology. This commu-

nication and quantitative integration is the webbing on which the future of our geo-

science field depends. My approach, therefore, has been to research and disseminate

128



a numerical framework that attempts to support and enable a number of these diverse

interdisciplinary collaborations. I hope that a lasting contribution of my work is the

open, modular approach that I have curated and the community that I have helped to

seed around these ideas.
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Appendix A

Frameworks and ontologies

A computational science framework provides a set of standards such that individual

scientists can contribute software components, in this case components used in simu-

lation or inversion routines, with the confidence that those components will work with

other components in that framework. As such, the standards of the framework define

the responsibilities of each component (or class of component) and the required in-

terfaces of all components. The term framework is commonly used in the software

community, however, the formal term for the component organization and their prop-

erties is an ontology. The use of ontologies in the sciences to formally describe domain

knowledge has exploded in recent decades, especially in domains of artificial intelli-

gence, chemistry, and biology, but also more recently in the geosciences (Sharman

et al., 2004; Ma, 2011). A computational ontology (rather than the underlying dis-

cipline of philosophical ontology) is a “formal explicit specification of a shared con-

ceptualization” (Gruber, 1993). Noy and McGuinness (2002) summarizes the purpose

of computational ontologies as enabling a shared understanding of the structure of in-

formation and systematically enabling knowledge and information reuse. Practically
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ontologies can (a) provide access and discoverability to heterogeneous information;

(b) act as a common language to lower the barrier to transfer of ideas; and (c) act as

a specification for interoperability, for example, as a communication protocol or ap-

plication programming interface (Sharman et al., 2004). The techniques for building

ontologies amount to capturing, synthesizing, organizing, and digitizing the relation-

ships between concepts, conceptual inheritance patterns, and behaviour. Ontologies

are most commonly used for storing and organizing data, for example, connecting ge-

netic data with phenotypic data in bioinformatics. However, ontologies are also used

in defining tasks, workflows, and problem solving methods (Fensel et al., 1997; Bard

and Rhee, 2004). In more mature interdisciplinary fields, this research is becoming

core to scientists’ day to day research; for example, Stein (2008) notes that “all cur-

rent biomedical cyberinfrastructure efforts use ontologies.” As a result of successes

in other fields, geoscience integration is currently the target of major funding initia-

tives across the world (e.g. EarthCube - 11 year NSF project, $35M in 2015; CIMIC

Footprints Project - NSERC Project, 24 Universities, 30 Industry, $13M). Many of the

current efforts are focused on computational science frameworks, formally describing

geoscientific data (using ontologies), and formally describing methods of integrating

disciplines. For example, a Common Component Architecture for high performance

scientific computing (Armstrong et al., 1999) has been used as the basis for coupled

forward integration of a number of geoscience simulation tools written by different

authors (Peckham et al., 2013). The research into these domain specific standards for

interoperability is critical for sustainable interdisciplinary research.

The growth in complexity of geophysical data and analysis and the necessity for

cross-disciplinary integrations is also coincident with the revolution of open source

software communities, largely enabled through web-based interactions. Other re-
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search communities, for example Astropy in astronomy and SciPy in numerical

computing, have embraced the open source approach for collaboration and research

(Astropy Collaboration et al., 2013; Jones et al., 2001). These pioneering efforts are

now complemented by easy-to-use, ubiquitous web-based repositories and version-

control systems (e.g. GitHub), that have removed many of the barriers associated

with management and collaboration. The growth of such systems, coupled with the

maturity of individual geophysical subdisciplines (e.g. potential fields, electromag-

netics), presents an opportunity to develop a computational framework and associated

ontology for geophysical simulation and inversion. An ontology is an embodiment

of concepts, relationships, and behaviours in a specific scientific domain and can be

(a) captured in special purpose languages (e.g. Web Ontology Language, Resource

Description Framework), or (b) captured in general purpose computer programming

languages (e.g. Python, Java, C++) (Sharman et al., 2004). To research a geophysical

simulation and inversion framework, I have chosen the latter approach for the pur-

poses of utility, testing, and creating a framework/ontology that can be openly used

and evolved by the geoscience community.

142



Appendix B

Finite volume techniques

B.1 Introduction

Inverse problems are common across the geosciences: for example, in geophysical

imaging, history matching, and parameter estimation. Many of these inverse problems

require constrained optimization using partial differential equations (PDEs), which re-

quires derivatives with respect to mesh variables in addition to simulation of the PDE.

Finite difference, finite element, and finite volume techniques allow subdivision of

continuous differential equations into discrete domains. Knowledge and the appro-

priate application of these methods is fundamental to simulating physical processes.

Many inverse problems in the geosciences are solved using stochastic techniques or

external finite difference-based tools (e.g. Doherty (2004)), which are robust to local

minima and the programmatic implementation, respectively. However, these meth-

ods do not scale to situations where millions of parameters are to be estimated. This

sort of scale is necessary for solving many of the inverse problems in geophysics and,

increasingly, hydrogeology (e.g. electromagnetics, gravity, and fluid flow problems).
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In the context of the inverse problem, when the physical properties, the domain,

and the boundary conditions are not necessarily known, the simplicity and efficiency

in mesh generation are important criteria. Complex mesh geometries, such as body

fitted grids, commonly used when the domain is explicitly given, are less appropriate.

Additionally, when considering the inverse problem, it is important that operators and

their derivatives are accessible for interrogation and extension. The goal of this work

is to provide a high-level background to finite volume techniques, which are abstracted

across four mesh types: (1) tensor product mesh; (2) cylindrically symmetric mesh; (3)

logically rectangular, non-orthogonal mesh; and (4) octree and quadtree meshes. This

work contributes an overview of finite volume techniques, in the context of geoscience

inverse problems, which are treated in a consistent way across various mesh types in

order to highlight similarities and differences.

B.1.1 Attribution and dissemination

The numerical implementations underlying this work have been created throughout my

PhD in multiple programming languages (i.e. Matlab, Julia, and Python) and have been

influenced by course material and instruction from Dr. Eldad Haber, Dr. Uri Ascher

and Dr. Chen Grief (Haber, 2015; Ascher and Greif, 2011). Further references can be

found throughout the scientific literature (cf. Yee (1966); Hyman and Shashkov (1999,

1997)). I have published aspects of this work in Cockett et al. (2015c), in many Soci-

ety of Exploration Geophysics abstracts (Heagy et al., 2014; Kang et al., 2015a; Heagy

et al., 2015c) and in a tutorial paper in The Leading Edge (Cockett et al., 2016a). Dave

Marchant and Lindsey Heagy influenced the development of the cylindrical mesh, and

the octree storage algorithm was loosely based on the implementation by Burstedde

et al. (2011). These techniques and implementations proved successful in the Sim-
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PEG project (Cockett et al., 2015c) and are used in applications of frequency and time

domain electromagnetics, direct current resistivity, gravity, magnetics, fluid flow, and

seismic across industry, academia, and education (Rosenkjaer et al., 2016; Kang and

Oldenburg, 2016; Heagy et al., 2015b; Rosenkjaer et al., 2015b; Cockett et al., 2015c;

Kang et al., 2014). The techniques discussed below, as well as a number of accom-

panying utilities for mesh generation, import, export, visualization, documentation,

and testing are provided in an open source package for Python, called: discretize

(https://github.com/simpeg/discretize). The discretize package is released using

the permissive MIT license to encourage reuse and future improvement of this work.

My collaborators and I have also generalized across these types of meshes, in order to

have both a high-level and a standard programmatic interface, differing only in mesh

instantiation. The generalization of meshes allows both ourselves and others to build

upon this work as we continue to improve and expand its capabilities.

B.2 Terminology

To simulate differential equations in any computational domain, we must approximate

the continuous equations through discretization onto a mesh. The mesh defines bound-

aries, locations of variables, and connectivity between cells. In this section we will dis-

cuss a staggered mimetic finite volume approach (Yee, 1966; Hyman and Shashkov,

1999; Hyman et al., 2002).

B.2.1 Mesh types

The topographic interface, the location of boundary conditions, and the location of

sources/receivers are often the only non-numerical constraints on mesh generation

in geophysics. These constraints require meshes that that can pad efficiently to suf-
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ficiently distant boundaries (as in electromagnetics), align or refine to topographic

features, and refine around the locations of sources. Numerical efficiency generally

translates to minimizing the number of cells used in any computational domain. Here,

we will consider four mesh types: (1) tensor product mesh; (2) logically rectangu-

lar; non-orthogonal mesh (curvilinear mesh); (3) octree and quadtree meshes; and (4)

cylindrically symmetric mesh. We use different techniques for dealing with padding,

alignment, and refinement for each mesh. Orthogonal vectors of spacings define a

tensor product mesh (tensor mesh). In the 2D example in Figure B.1a, the mesh is cre-

ated from two vectors, hx and hy, which define constant spacing, orthogonal to each

direction. As the spacing is fixed, any refinement in one dimension means that that

refinement is completed everywhere in the domain. These refinement constraints of-

ten lead to meshes with many cells and unnecessary resolution far from the domain of

interest. Tree meshes are built through successively dividing mesh cells into four or

eight cells in 2D quadtree meshes and 3D octree meshes, respectively (Figure B.1b).

Octree meshes are used extensively in electromagnetic geophysical inversions (Haber

and Heldmann, 2007). These meshes can also be built on a variable tensor spaced grid,

but have the advantage of not refining in locations far from areas of interest, resulting

in meshes with fewer cells. Unlike the tensor mesh, tree meshes are not logically rect-

angular; that is, each cell does not necessarily have two neighbours in each dimension

(x+, x−, y+, y−, etc.). A quadtree cell may have additional neighbours if it is coarser

than its direct neighbours. Using a mesh leveling algorithm, the level of refinement

can be enforced to be a maximum of one level change between cells (Burstedde et al.,

2011). The tensor mesh is a logically rectangular orthogonal mesh, where ‘orthogonal’

means that the tensors are orthogonal and define a local Cartesian coordinate system.

Another mesh type under consideration is a logically rectangular non-orthogonal mesh,
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where each cell still has two neighbours in each dimension but the cells are neither re-

quired to be axes aligned nor to have orthogonal faces. Here, we will refer to logically

rectangular non-orthogonal meshes as curvilinear meshes, as seen in Figure B.1c. As

these meshes are no longer constrained to have orthogonal cells, topographic layers

can be better approximated, without the staircase effect that is present on both tensor

and tree meshes. Additionally, curvilinear meshes allow different ways of padding to

‘infinity’, and can be used to approximate spherical domains (Calhoun et al., 2008).

Finally, we will also consider a cylindrically symmetric tensor mesh. The cylindrically

symmetric tensor mesh is defined in a cylindrical coordinate system where the radial

r, azimuthal θ , and vertical z dimensions are in the following domains:

r ∈ [0,∞), θ ∈ [0,2π), z ∈ (−∞,∞) (B.1)

Cylindrical symmetry is enforced through a single cell in θ . With the exception of cal-

culations for boundary conditions, volume and area are formulated similarly to tensor

meshes. Cylindrical meshes are often used for electromagnetics problems for layered

systems or cylindrically symmetric problems, such as geophysics or fluid flow around

a borehole (Pidlisecky et al., 2013; Heagy et al., 2016). Fully unstructured (tetrahe-

dral) meshes will not be considered here, but are commonly used in geophysics and

hydrogeology (e.g. Ollivier-Gooch and Van Altena (2002); Jahandari et al. (2017)).

We chose the meshes used in this appendix for their common use in electromagnetic

geophysics and fluid flow (Haber and Ascher, 2001; Li and Oldenburg, 1996; Egbert

and Kelbert, 2012; McDonald and Harbaugh, 2003; Kelbert et al., 2014; Cockett et al.,

2015c). All meshes are easy to parameterize, which is an advantage when relatively

little is known about the simulation domain, as is the case in the context in geophysical
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inverse problems.

Figure B.1: Three mesh types in two dimensions on the domain of a unit square:
(a) a tensor product mesh, (b) a quadtree mesh, and (c) a curviliear mesh.

B.2.2 Cell anatomy

This approach requires defining variables at either cell centers, nodes, faces, or edges,

as described in Figure B.2. The finite volume technique is derived geometrically from

studying the control volume of a mesh ‘cell’. The cell center is often used for scalar

variables or anisotropic tensors that represent physical properties. This shows that a

single value fills the entire cell, allowing discontinuities between adjacent cells. From

a geologic perspective, discontinuities are prevalent, as large differences in physical

properties may exist between geologic layers. Cell nodes, alternatively, are often used

for variables that are continuously varying in space; that is, internal to a cell values

between nodes can be found through bi/tri-linear interpolation. Vector quantities are

held on the faces or edges.

A cell face variable represents a vector that is a flux into or out of that face; the

vector is pointed in the face normal direction,~n. As seen in the curvilinear cell in Fig-

ure B.3, the face normal directions may not be orthogonal, nor parallel to the Cartesian
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Figure B.2: Names of a finite volume cell on a tensor mesh in (a) one dimension,
(b) two dimensions, and (c) three dimensions.

axes. However, as the direction of the face normal is a property of the mesh, the face

variables only store the magnitude of the vector. A face variable on a single rectilinear

cell is a length four array in 2D and a length six array in 3D. There are twelve edges

in 3D, four in 2D, and one in 1D for each cell, all holding vector quantities that point

in the tangent directions,~t. While cell faces represent fluxes, edges represent vector

fields, as is the case in electromagnetics.

Figure B.4 displays a tree mesh cell, which shows the location of hanging faces and

nodes when two cells of different refinement levels share an interface. These hanging

nodes, faces, and edges become important when computing the differential operators

and inner products. A cylindrically symmetric mesh has the same structure as a tensor

product mesh cell, except that all cells must be in the radial domain r ∈ [0,∞). It is

tempting to conceptually locate the cell center of the first radial cell at r = 0, as this

would be at the center of the cylinder. However, locating the cell center here violates

our staggered grid in cylindrical coordinates and operators, such as the divergence, do

not converge with second order accuracy. For consistency throughout the following
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Figure B.3: Names of a finite volume cell on a curvilinear mesh in (a) two di-
mensions, and (b) three dimensions. Note that the cell faces and edges are
no longer orthogonal.

sections, we will use terminology derived from a 3D cell. A cell’s volume will refer

to: volume in 3D; area in 2D; and length in 1D. Face areas will refer to the area

perpendicular to a 3D face, which is a length in 2D and unity in 1D. Edge lengths

will refer to lengths in 2D and will be in the same spatial locations as the cell faces

(although with a different numbering and vector direction). In 1D, edge lengths will be

the cell ‘volumes’ (lengths) and will be located at the cell centers. As such, the length

of the ‘volume’ array will always be equal to the number of cells in the mesh.

B.2.3 Numbering

The numbering of any mesh must be explicit in order to define arrays of properties,

fields, and fluxes. The numbering of the mesh is arbitrary but has a number of conse-

quences for the resulting differential operator matrices in terms of their structure and
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construction. In all logically rectangular meshes under consideration, we count first

in the x, then y, then z dimensions. Counting in this way results in column vector-

ization and allows the use of Kronecker products for many of the matrix equations,

specifically, the vectorization identity:

vec(AB) = (Im⊗A)vec(B) (B.2)

where B is the discretized grid function, which is useful in building differential op-

erators recursively from 1D operators. For non-logically rectangular meshes, such

as quadtree and octree meshes, we sort the numbering first by distance along the

x-axis, then y- and then z-. In the case of faces and edges where there are x-, y-,

and z-components, we order these components separately and then concatenate them.

The numbering is shown in Figure B.8a for a quadtree mesh for the cell centers, x-

faces, and y-faces. Although Kronecker products can be used for logically rectangular

meshes, this is not possible for tree-based meshes and the indexes must be kept track

of ‘by hand’.

It is important to know the number of variables for the discretization of grid vari-

ables. For a 3D logically rectangular mesh, the number of cells, nodes, faces, and
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edges are:

nc = ncx×ncy×ncz cells

nn = (ncx +1)× (ncy +1)× (ncz +1) nodes

n fx = (ncx +1)×ncy×ncz x-faces

n fy = ncx× (ncy +1)×ncz y-faces

n fz = ncx×ncy× (ncz +1) z-faces

nex = ncx× (ncy +1)× (ncz +1) x-edges

ney = (ncx +1)×ncy× (ncz +1) y-edges

nez = (ncx +1)× (ncy +1)×ncz z-edges

(B.3)

When comparing this to a cylindrically symmetric mesh, it is interesting to note that

neither nodes nor θ faces exist, and edges only exist in the θ direction. A tree mesh

has an added complication, which occurs when two adjacent cells have different re-

finement levels, leading to hanging nodes, edges, and faces. Figure B.4 schematically

shows the locations of the hanging faces and nodes. When not dealt with, these com-

plications cause numerical inaccuracies, which we will discuss further in Section B.3

on differential operators and Section B.4 on inner products.

B.2.4 DC resistivity equations

We will use the direct current (DC) resistivity problem from geophysics to motivate

discretization of a parabolic partial differential equation and explain the various op-

erators and operations necessary to consider for the finite volume technique. The

equations for DC resistivity are derived in Figure B.5 and are further discussed in

(Pidlisecky et al., 2007). Conservation of charge (which can be derived by taking the

divergence of Amperes law at steady state) connects the divergence of the current den-
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Figure B.4: Names of a finite volume cell on a tree mesh in (a) two dimensions,
and (b) three dimensions. Note the location of hanging x-faces from the
refined cells; hanging edges are not shown.

sity everywhere in space to the source term, which consists of two point sources: one

positive and one negative. The flow of current sets up electric fields according to Ohms

law, which relates current density to electric fields through the electrical conductivity,

σ . From Faradays law for steady state fields, we can describe the electric field in terms

of a scalar potential, φ , which in a DC resistivity experiment is sampled at potential

electrodes to obtain data in the form of potential differences. The first order form of

the governing equations for DC resistivity are:

∇ ·~j = I(δ (~r−~rs+)−δ (~r−~rs−)) = q

1
σ

~j =−∇φ

(B.4)

where I is the input current at the positive and negative dipole locations,~rs± , captured

as Dirac delta functions. To motivate the discretization of the DC resistivity equations,

we will write the equations in weak form in the following section.
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Figure B.5: Derivation of the direct current resistivity equations.

B.2.5 Weak formulation

The weak formulation integrates the DC resistivity equations with a test function, ~f ,

which reduces the requirement of differentiability (more details are available in Haber

(2015)). To keep the notation clean, we also introduce notation (·, ·), which we refer

to as an inner product.

(a,b) =
∫

Ω

a(~x) ·b(~x) ∂v (B.5)

where the vectors~a and~b are arbitrary. The vector part of the DC resistivity equations

(written in first order form) can be written in weak form as:

(
1
σ

~j, ~f
)
=
(
−∇φ , ~f

)
(B.6)

154



where ~f is the test function. We can now employ a vector identity:

∇ ·
(

a ~f
)
= a

(
∇ ·~f

)
+
(
~∇ a

)
·~f (B.7)

to integrate the right-hand side by parts. This integration results in the discretization

of the DC resistivity equations entirely in terms of the divergence operator.

(
1
σ

~j, ~f
)
=
∫

Ω

φ

(
∇ ·~f

)
−∇ ·

(
φ~f
)

dv (B.8)

Here, if we assume Dirichlet boundary conditions for φ |
∂Ω
= 0, that is, the potentials

are zero far away from the domain of interest, we can use the divergence theorem to

eliminate the second term on the right-hand side of the equation. This results in the

following equation for DC resistivity with Dirichlet boundary conditions on φ :

(
1
σ

~j, ~f
)
=
∫

Ω

φ

(
∇ ·~f

)
dv (B.9)

We use Dirichlet for simplicity in this example. In practice, Neumann conditions are

often used because ‘infinity’ needs to be further away, if applying Dirichlet boundary

conditions, since potential falls off as 1/r2 and current density as 1/r3. Similar tech-

niques for the weak formulation of Maxwell equations can be derived by applying the

appropriate vector identities and boundary conditions. In the following two sections,

we will discuss the differential operators and the discretization of inner products that

are prevalent in the weak formulation.
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B.3 Operators

With the terminology and structure of the meshes well-defined, we can now create op-

erators for the meshes. Although operators for averaging and interpolation are critical

to any implementation, in this section, we will focus on the differential operators for

the divergence, curl, and gradient. These operators take the form of sparse matrices,

which are properties of each mesh. Although nuances exist in creating the operators

for each mesh type, the basic building blocks come from the geometric concepts of

individual cells, specifically the cell volume, face areas, and edge lengths. Given the

cell spacings of tensor meshes, the computation of these properties is straightforward.

For the cylindrical mesh, these values must be calculated in cylindrical coordinates.

The volume and area calculations on the curvilinear mesh are straightforward in two

dimensions. However, in three dimensions, the faces of the cell may not lie on a plane

and, as a result, both the volume and face areas may not be well-defined. For face area,

we use the average of the four parallelograms, which are calculated at each node of the

face. As seen in Figure B.6, the cell volume is calculated by dividing the cell into five

tetrahedrons and calculating the volume of each.

Figure B.6: Volume calculation using five tetrahedra.
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B.3.1 Divergence

The divergence is the integral of a flux through a closed surface as that enclosed volume

shrinks to a point.

∇ ·~f (p) def
= lim

v→{p}

∫∫
S(v)

~f ·~n
|v|

dS (B.10)

Since we have discretized and no longer have continuous functions, we cannot take

the limit fully to a point. Instead, we approximate the limit around a finite volume: the

cell. The flux out of the surface (~f ·~n) is exactly how we discretized ~f onto our mesh

(i.e. f), except that the face normal points out of the cell (rather than in the coordinate

directions). We can readily calculate the surface areas and normals of all cells in the

mesh. The flux values on each cell face are discretized and represented by a scalar

value pointing in the direction of the face normal. As such, we need only multiply

these values by the face area and multiply by ±1 to ensure an outward facing normal

with respect to the cell under consideration. To construct the divergence operator, D1,

in one-dimension, the following discretization is used:

D1 f = V−1D±S f = diag (v)−1


−1 1

. . . . . .

−1 1


︸ ︷︷ ︸

D±

diag (s)



f1

f2

...

fn

fn+1


(B.11)

where V is a sparse matrix with the cell volumes on the diagonal, D± is a ‘stencil’

matrix that ensures outward pointing normals, and S is a diagonal matrix including

the surface areas of each face. To move to higher dimensions, we exploit the logically

rectangular structure and the column-ordered vectorization of the face variable. Kro-
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necker products are used to place the difference matrix, D±, on the correct cells and

faces. Not only is this conceptually efficient, when using an interpreted programming

language, this also allows use of lower-level functions in compiled languages. For

example, the divergence matrix in three-dimensions may be formed by:

Dx = I3⊗ I2⊗D1 (B.12a)

Dy = I3⊗D2⊗ I1 (B.12b)

Dz = D3⊗ I2⊗ I1 (B.12c)

where Di is the difference matrix in one-dimension for the ith dimension. The Ii is

the identity matrix that has the length of the cells in the nth dimension. Here the full

divergence operator can be formed by:

D = V−1 [Dx Dy Dz] S (B.13)

The diagonal matrix, S, contains the surface areas for each cell in the x, y, and z

directions, concatenated on the matrix diagonal. As the divergence only takes account

of fluxes into and out of a cell in the direction of the face normal, this concatenation

works for any logically rectangular mesh, regardless of orthogonality. For a cylindrical

mesh, we need to give attention to the middle cylindrical cell where the flux at r = 0 is

known to be zero and, as such, this column can be removed from the Dr matrix.

For a tree mesh, we need to pay special attention to the hanging faces to achieve

second-order convergence for the divergence operator. Although the divergence can-

not be constructed through Kronecker product operations, the initial steps are exactly

the same for calculating the stencil, volumes, and areas. These steps yield a divergence
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Figure B.7: Visual connection between the continuous and discrete representa-
tions of the divergence.

defined for every cell in the mesh using all faces. However, redundant information ex-

ists when including hanging faces. As seen in Figure B.8, the x-face between the cells

{1,3} and cell 4 has three locations for an x-face variable, but there is conceptually

only a single flux at that location: x-face 4. As such, we can construct a matrix that

identifies these hanging faces and assigns them to the same face variable. This matrix

includes only ones and can be multiplied on the right-hand side of the unreduced di-

vergence. This ensures that the flux into the negative x-face of cell 4 in Figure B.8 has

a single numeric value.

B.3.2 Curl

Similar to the divergence operator, we rely on the geometric interpretation of the curl:

( ∇×~e ) · n̂ def
= lim

s→0

(
1
|s|

∮
c
~e ·dr

)
(B.14)

where, ~n is the outward facing normal, s is the area of the face, and the line inte-

gral direction c is oriented positively with respect to the normal (i.e. right-hand rule).

Figure B.9 shows the integrating directions for a unit cube in each unit direction. To

discretize the curl of an edge variable, we must integrate along each edge in the appro-
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Figure B.8: Simple quadtree mesh showing (a) the mesh structure, cell number-
ing, and face numbering in both the x and y directions; and (b) the structure
of the face divergence matrix that has eliminated the hanging faces.

priate direction (i.e. multiply by ±1) and divide by the face area:

C = diag(s)−1 C±diag(l) (B.15)

where l is an edge length vector, and s is the face area vector. The numeric curl

on edges yields a vector variable on cell faces. Similar to the divergence operator,
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this definition can exploit the logically rectangular nature of the mesh and create the

difference matrix, C±, using Kronecker products. For the octree mesh, we need to

Figure B.9: Edge path integration or definition of the curl operator.

treat both the hanging edges and faces to remove redundant information. Hanging

edges are treated differently than faces. We can average the resulting flux from the curl

operation through a face, from the five estimates of the flux to a single value over the

larger face. We multiply this averaging matrix on the left-hand side of the unreduced

curl matrix. The edges, however, need to be eliminated through linear interpolation

of the coarse edges to the six refined edges in each direction on each coarse face. We

multiply this interpolation on the right-hand side of the unreduced curl matrix. These

two operations result in a curl that has eliminated both hanging edges and hanging

faces through interpolation and averaging, respectively.

B.3.3 Gradient

The gradient of a scalar function, f (x), is a vector field whose dot product with an

arbitrary vector, v ∈ Rd , yields the directional derivative in that direction.

(
∇ f (x)

)
·v = Dv f (x) (B.16)
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In Cartesian coordinates (d = 3), this has the much more familiar form:

∇ f =
∂ f
∂x

i+
∂ f
∂y

j+
∂ f
∂ z

k (B.17)

To discretize the gradient of a nodal variable, we can do a forward difference along all

edges of the mesh and divide by the length of the edge tangents

G = diag(l)−1 G± (B.18)

where G± is the gradient stencil identifying the correct nodes, with ±1, and l is the

lengths of the edges. Multiplying the gradient by some nodal variable, Gn, results in

a vector quantity that is the directional derivative along the edge tangent, which is a

central difference and results in a variable located on the edges on the mesh. Alter-

natively, we can formulate the gradient for cell-centered, rather than nodal, variables.

This formulation explicitly considers neighbouring cells, rather than just a single fi-

nite volume, and is a finite difference method. Although possible, this formulation is

more cumbersome to represent on both tree meshes and curvilinear meshes or when

anisotropy is considered. When a gradient is necessary in a differential equation, and

the variable is located on cell centers instead of nodes, it is usually possible to rearrange

the equations, using vector identities, to use the negative transpose of the divergence,

as previously discussed.

For both the quadtree and octree meshes, we must once again deal with the hanging

nodes and hanging edges. The treatment here is similar to that in the curl matrix. We

interpolate hanging nodes from their neighbours (two in 2D, four in 3D) and the result

of the gradient, an edge vector on all edges, is averaged to exclude the hanging edges.
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Since we are using a staggered grid with centered differences, the discretization

of the differential operators is second-order. That is, as we refine the mesh, our ap-

proximation of the divergence should improve by a factor of two. We can verify this

numerical convergence using simple test functions with analytic expressions, well-

chosen boundary conditions, and known derivatives. The assertion of this expectation

of order is a critical piece of any numerical implementation.

B.4 Inner products

Evaluating volume integrals over the cell becomes important when formulating equa-

tions in weak form, as in Section B.2.5. We can numerically evaluate these volume

integrals in many different ways, however, the method must take into account the lo-

cation and number of approximations of the integrand variables that are available. For

two cell-centered variables, for example, the evaluation of the integral is simple and

can be calculated by the midpoint approximation. The result is an inner product that

includes a volume term, v, for each cell:

(a,b) =
∫

Ω

a(~x) ·b(~x) ∂v

≈ a>diag(v)b
(B.19)

Complications arise when we approximate the inner product but the variables do not

live in the same location; that is, on the edges, faces, and cell centers.

B.4.1 Face inner product

We use the face inner product when there is a multiplication between a cell-centered

variable and a vector variable located on the faces. In the following example, we will

use a cell-centered variable, σ , which is fully anisotropic, meaning that, in 3D, each
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cell is represented by a 3× 3 tensor. We multiply the tensor by ~j and take the inner

product with a face variable ~f . When discretizing this integral, recall that the dis-

cretization has approximations, j and f, on each face of the cell. In 2D, that means two

approximations of jx and two approximations of jy. In 3D, we also have two approx-

imations of jz. Additionally, in the general case, these vectors may not be orthogonal

nor axis aligned and so we must first transform them into their Cartesian components

before multiplying by the discretized tensor, Σ. Regardless of how we choose to ap-

proximate the vectors, jcart and fcart, we can represent this in vector form for every cell.

(
σ
−1 ~j, ~f

)
=
∫

Ω

σ
−1~j ·~f ∂v

≈ j>cart
(√

vcell Σ
−1√vcell

)
fcart

(B.20)

We multiply by square-root of volume on each side of the tensor, Σ to keep symmetry

in the system. Here, jcart is an approximation of the Cartesian ~j that must be cal-

culated from known locations on the mesh, jmesh. There are many different ways to

evaluate the inner product
(

σ−1 ~j, ~f
)

: we could approximate the integral using trape-

zoidal, midpoint, or higher order approximations, for example. A simple, second-order

method is to break the integral into a sum of 2d sections and apply the midpoint rule,

where d is the dimension of the mesh (i.e. two in 1D, four in 2D, and eight in 3D). For

each of these sections, the midpoint rule uses the closest components of j to compose

a Cartesian vector. We use a Qi matrix of size 2×2d consisting of 0s and 1s, to select

the appropriate faces to compose the corresponding vector jcart.

ji
cart = N−1

i Qi jmesh (B.21)
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Here, the i index refers to the section where we choose to approximate this integral. In

a curvilinear mesh, the fluxes chosen by Qi are not necessarily axis-aligned and also

may not be mutually orthogonal. As such, we must use a normalization to get back

to Cartesian components, where multiplication with the Σ is defined. These projection

matrices, Ni, are completed 2d times for every cell of the mesh and, in 2D, have the

form:
Q(i)jmesh︷ ︸︸ ︷[

j(1)

j(3)

]
=

N(i)︷ ︸︸ ︷[
n(1)x n(1)y

n(3)x n(3)y

] jcart︷ ︸︸ ︷[
jx
jy

]
(1)
,[

j(1)

j(4)

]
=

[
−n>(1)−
−n>(4)−

][
jx
jy

]
(2)

,

[
0 1 0 0
0 0 1 0

]
jmesh =

[
−n>(2)−
−n>(3)−

]
j(3)cart,

Q(4) jmesh = N(4) j(4)cart

(B.22)

where n(i) is the normal to face i. Solving for the Cartesian flux, j(i)cart, requires inverting

a small matrix (2× 2 or 3× 3) for each section. We now have eight evaluations in

3D of the midpoint rule, using various approximations for jcart. We can sum these

approximations together to define the face inner product matrix, M f
Σ−1 , for a logically

rectangular mesh of any dimension, d.

M f
Σ−1 =

1
2d

(
2d

∑
i=1

Q>i N−>i
√

vcell Σ
−1√vcell N−1

i Qi

)

=
2d

∑
i=1

P>i Σ
−1Pi, where

Pi =

√
1
2d Id⊗diag(v)N−1

i Qi

(B.23)

Here, each P ∈ R(d∗nc, n f ) is a combination of the projection, volume, and any nor-

malization to Cartesian coordinates. In a numerical implementation, it is often more
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efficient to complete this operation for each cell in the mesh at the same time, and

return the sparse matrices for caching as this is a common operation in any inverse

problem that estimates a cell-centered variable. For the tree mesh, we complete the

face inner product identically as above, except for a final step to exclude the redundant

hanging faces in the same way as the divergence matrix.

B.4.2 Edge inner product

The edge inner product with a vector that is defined on the edges of a cell (rather than

on the faces, as above) has a similar derivation. The difference comes in 3D, when

selecting the edges around each node, as there are twelve edges instead of only six

faces; these edges are selected by the Q̂i matrix. Similarly, in the normalization to

Cartesian coordinates, we use the edge tangent directions instead of using the face

normals. The Cartesian edge values, ec
(i), are projected using the tangents:

e(i)cart = T−1
(i) Q̂(i) emesh (B.24)

where Q̂(i) is the projection matrix that selects the edges closest to each midpoint

approximation. Once again, we compute the inner product by the mass matrix acting

on the edges:

Me
ρ =

1
2d

(
2d

∑
i=1

Q̂>i T−>i
√

vcell ρ
√

vcell T−1
i Q̂i

)
(B.25)

For the tree mesh, we complete the edge inner product as above, except with an added

step to deal with the hanging edges. This step excludes the hanging edges through

linear interpolation in the same way as the curl matrix.
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B.4.3 Tensor product mesh

The generality of this equation can be reduced when dealing with an axis-aligned ten-

sor mesh with an isotropic physical property, σ . In this case, we do not need to take

into account the normalization from N−1
i . For a tensor mesh, the face inner product

can be calculated as follows and can be interpreted as averaging the physical property

between neighboring cells:

M f
σ−1 = diag

(
A>v (v�σ

−1)
)

(B.26)

where � is a Hadamard product for point-wise multiplication and Av ∈ R(n f , nc) is an

averaging matrix from faces to cell centers. In one dimension this matrix has the form

A(1)
v =

 1
2

1
2

. . . . . .
1
2

1
2

 (B.27)

The matrix has slight differences on a cylindrical tensor mesh to exclude the r = 0 face.

The ‘averaging’ matrix can be made for higher dimensions using Kronecker products

and horizontal concatenation:

Av =
[
I3⊗ I2⊗A(1)

v , I3⊗A(2)
v ⊗ I1, A(3)

v ⊗ I2⊗ I1

]
(B.28)

Note that this matrix is often referred to as the face-to-cell-center averaging matrix and,

as such, is often divided by the dimension of the mesh to be a true average (i.e. there

are three face averages above). If this is the case, care needs to be taken to restore this

constant when calculating the inner product. Although general anisotropy is not easily

added in this form, coordinate anisotropy can be added by composing this matrix as
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block diagonals instead of horizontal concatenation. Similarly, on a cylindrical mesh,

if anisotropy is necessary, care should be taken that the anisotropy uses Cartesian,

rather than cylindrical, coordinates, unless intended.

B.4.4 Anisotropy

For defining isotropic, coordinate anisotropic, and fully anisotropic parameters, the

following conventions are used in 3D:

~σ =


σ1 0 0

0 σ1 0

0 0 σ1

 ~σ =


σ1 0 0

0 σ2 0

0 0 σ3

 ~σ =


σ1 σ4 σ5

σ4 σ2 σ6

σ5 σ6 σ3

 (B.29)

In 2D, these conventions are similarly defined as:

~σ =

σ1 0

0 σ1

 ~σ =

σ1 0

0 σ2

 ~σ =

σ1 σ3

σ3 σ2

 (B.30)

Both the isotropic and coordinate anisotropic material properties result in a diagonal

mass matrix on a tensor mesh. This is easy to invert if necessary. However, in the fully

anisotropic case, or for any curvilinear mesh, the inner product matrix is not diagonal,

as can be seen for a 3D mesh in the figure below.

B.4.5 Derivatives

In the context of parameter estimation, we are often interested in the parameters inside

inner products and require efficient matrix-free derivatives for these elements. The

derivative of these inner products is actually a tensor. However, the derivative is a

matrix if we only require the computation of this product with a vector (as is usually
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Figure B.10: Matrix structure of a face inner product of a cell centered physical
property on a tensor mesh.

the case). To show the computation of the inner product derivatives, we will consider a

fully anisotropic tensor for a 3D logically rectangular mesh. Let us start with one part

of the sum which makes up M f
Σ

and take the derivative when this matrix is multiplied

by some vector, w:

P>i ΣPiw (B.31)

Here, we will let Piw = y and y will have the form:

y = Piw =


y1

y2

y3

 (B.32)
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This matrix can subsequently be multiplied by P>i Σ. When multiplying these matrices

by hand, we can see that they have the form:

P>i Σy = P>i


σ1 σ4 σ5

σ4 σ2 σ6

σ5 σ6 σ3




y1

y2

y3

= P>i


σ1�y1 +σ4�y2 +σ5�y3

σ4�y1 +σ2�y2 +σ6�y3

σ5�y1 +σ6�y2 +σ3�y3

 (B.33)

where � is the Hadamard product, and represents element-wise multiplication. We

can now take the derivative with respect to any one of the σ parameters, for example,

∂

∂σ1

∂

∂σ1

(
P>i Σy

)
= P>i


diag(y1)

0

0

 (B.34)

Meanwhile, the derivative for ∂

∂σ4
is:

∂

∂σ4

(
P>i Σy

)
= P>i


diag(y2)

diag(y1)

0

 (B.35)

These derivatives are calculated for each of the eight components of the discretized

inner product (four in 2D).

For a tensor product mesh with an isotropic physical property, this is again not the

most efficient method of calculation. Instead, we can recall an alternative formula for

calculating the inner product and take the derivative of that formula. We still must
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multiply by an arbitrary vector, w:

d
dσ

(
M f

σ w
)
=

d
dσ

(
diag

(
A>v (v�σ)

)
w
)

= diag(w)A>v diag(v)
(B.36)

Here, we calculate the derivative by exploiting the fact that a diagonal matrix and a

vector can be multiplied in either order; that is, they are commutative.

a�b = b�a

= diag(a)b

= diag(b)a

(B.37)

The derivative, with respect to physical properties, becomes critical for the inverse

problem, and is often not provided when implementations are solely focused on the

forward simulation. In the implementation presented, we have given thought to ac-

cessing the derivatives of isotropic and anisotropic physical properties in an efficient

way for all mesh types under consideration.

B.5 Implementation

The discretize package (http://discretize.simpeg.xyz) allows for the explicit ac-

cess to derivatives with respect to the inner product operations. This is due to our fo-

cus on the inverse problem and the construction of sensitivities and adjoint sensitivities

implicitly, through a matrix vector multiplication. Many other packages for finite vol-

ume or finite element simulation either focus entirely on the forward simulation (e.g.

Guyer et al. (2009)) or explicitly create the sensitivity matrices with automatic differ-

entiation and/or finite differencing (Ketcheson et al., 2012; LeVeque, 1997; Alexe and

171

http://discretize.simpeg.xyz


Sandu, 2014; Hindmarsh et al., 2005; Jasak et al., 2007). Haber has developed imple-

mentations in Ruthotto et al. (2016) and Haber (2015) which are written in Julia and

Matlab, respectively. We chose Python for the implementation because: (a) Python

has a large and growing scientific community, including existing and maintained tools

for matrix solvers and sparse matrix operations (eg. SciPy, pymatsolver); (b) it is an

object-oriented language (unlike Julia), which allows the relationships between the

mesh types to be expressed through base class inheritance and subtype polymorphism,

where appropriate; and (c) it is a high-level language that has the ability to interface

with low-level codes in Fortran and C, which allows for efficient creation of declarative

scripts while leveraging existing work in lower-level languages. If our primary interest

was in finite volume techniques, it may have been more sensible to choose a language

such as Julia (or Matlab, which is proprietary), which has better built-in capabilities

to represent sparse matrix operators and defaults to matrix multiplication, rather than

array multiplication. However, finite volume techniques are not the endgame of this

work. Rather, we wish to use these techniques in conjunction with geophysical in-

verse problems, which consists of much more than the numerical implementation and

requires many additional utilities for critical tasks, such as scripting, interactive pro-

gramming, reading files, 3D visualization, and communicating results.

B.5.1 Organization

The object-oriented programming model in Python allows organization of the finite

volume methods for the various meshes into a class inheritance structure. This or-

ganization has highlighted the similarities between techniques through elimination of

redundant code between shared concepts and methods. Such elimination leads to a

concise description of the differences between the methods, which was outlined in the
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previous section. We show our chosen organization in its entirety in Figure B.11. This

figure shows the class inheritance and class properties of the discretize package

and is best viewed in digital form.

There is a BaseMesh that has properties such as number of cells, nodes, faces,

and edges nC, nN, nF and nE, respectively. We have decided to separate the dif-

ferential, averaging and interpolation operators into their own class such that they can

be included as a mixin (rather than inherited) into the final mesh classes. Methods for

the inner products, IO to common formats, and visualization are also separated out

and included as mixins. We have separated the concepts of being logically rectangu-

lar and being a tensor product mesh because these are different concepts. The basic

counting of cells is on the rectangular mesh and the concept of a ‘cell-centered vector

in the x dimension’ is only for tensor product meshes. This inheritance demonstrates

the concepts that: (a) the curvilinear mesh is rectangular, but not a tensor mesh; (b)

the tree mesh is a tensor mesh, but not logically rectangular; and (c) the cylindrical

mesh is both logically rectangular and a tensor mesh, however, through subtype poly-

morphism the cylindrical mesh overwrites the concepts for geometric calculations of

volume, surface area, etc. as well as the counting for nodes, faces, and edges.

B.5.2 User interface

Our goal for the implementation is to create a common programmatic terminology

for working with finite volume techniques. By sharing the numerical implementation,

not only is this ‘language’ precise, but it can also be tested for accuracy. A brief

description of the implementation and use in practice, as well as a look at some of

the major properties on the abstract mesh types in Table 2.1, was previously given

in Section 2.3.4. As the implementation is openly available, we will point the reader
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to both the online, up-to-date documentation of each specific property and method

(http://discretize.simpeg.xyz) and to the 400+ unittest results of numerical convergence

(https://travis-ci.org/simpeg/discretize). As a brief overview, we use the convention of

C, N, F, E to refer to cells, nodes, faces and edges, respectively. For example, for

a tensor mesh the number of cells in the x-dimension would be called nCx, the nodal

tensor of x-locations as a vector is called vectorNx, and the location of all face vari-

ables with an x-component is called gridFx. We named differential operators by the

variable location that they act upon; for example: faceDiv and edgeCurl. These

names allow us to define multiple operators. For example, the gradient can either op-

erate on cell centers or nodes, cellGrad and nodalGrad, respectively. This lan-

guage is common across all meshes considered and extends to other mesh types not yet

implemented. As such, geophysical simulation codes can be built on top of this work

to write PDEs in a declarative way, which is agnostic to the mesh implementation ac-

tually used. In collaboration with Heagy, Kang, Rosenkjaer and Mitchell simulations

have been completed for time, frequency, and static implementations of electromag-

netics using 1D, 2D, and 3D versions of the tensor, tree, curvilinear and cylindrically

symmetric meshes (Rosenkjaer et al., 2016; Kang et al., 2015a; Heagy et al., 2015c,

2014; Cockett et al., 2014b; Kang et al., 2014; Heagy et al., 2015a; Cockett and Haber,

2013a; Cockett et al., 2016a; Heagy et al., 2016; Rosenkjaer et al., 2015a; Heagy et al.,

2015b). The terminology developed defines a clear interface, which allows for im-

provements in speed and functionality of the discretize package to transparently

improve geophysical simulations.

The discretize interface allows for lazy loading of properties; that is, all prop-

erties of the mesh are created on demand and then stored for later use. This caching of

properties is important, as not all operators are useful in all problems and, as such, are
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not created. The implementation here is different from some other finite volume imple-

mentations, as the operators are held in memory as matrices and are readily available

for interrogation. We find this feature beneficial for educational and research purposes,

as the discretization remains visually very close to the math, and the matrices can be

manipulated, visually inspected, and readily combined.

The major difference between the mesh types is the instantiation of each type. A

regular tensor mesh that is defined on the unit cube can be instantiated with integers.

For example, TensorMesh([4, 8])will create a 2D tensor mesh with equal spac-

ings (a regular mesh) with nCx = 4 and nCy = 8 that has a domain over the unit

square. Similarly, TensorMesh([hx, hy, hz]), where hx is a vector of variable

cell spacings in the x dimension, will create an irregularly spaced tensor mesh in 3D.

To produce a cylindrically symmetric mesh (i.e. with a single cell in the azimuthal, θ ,

dimension), we can mix these notations. For example, CylMesh([hr, 1, hz]).

For the definition of a CurvilinearMesh, all node locations must be specified in

each dimension. These node locations may be provided as a list of either 2D or 3D

matrices. For a tree mesh, a base mesh of tensor products are provided (which must

be a power of 2), which represents the location of nodes at the lowest refinement level.

A refinement function must also be provided. The refinement function is recursively

passes cell centers and chooses whether that cell should be refined. This functional

construction of the tree meshes encourages composable functions that refine based

on, for example, location from a source and/or distance from a topographic interface.

Alternatively, the mesh can be loaded from several formats (e.g. the UBC mesh and

model files or the Open Mining Format (*.omf)). Once we have constructed the mesh,

there is access to the differential operators, averaging and interpolation functions, and

utilities for visualization and export.
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B.6 Numerical examples

Here we will briefly explore the application of the curvilinear mesh for a DC resis-

tivity problem, which was introduced in Section B.2.4. We will explore the equations

for a tensor mesh and a curvilinear mesh over a unit cube with Neumann boundary

conditions. We tested the forward operators for analytical potential fields with the ap-

propriate boundary conditions. A series of electrode arrays (surveys) were written to

produce and collect data from the forward model. The survey used in this paper con-

sidered all receiver permutations in a grid on the top surface of the model. We note

that it is not possible to experimentally collect data at the same location as the source

electrodes; we discarded these permutations.

For the numerical experiments presented here, we use a true model with a geo-

logic interface with varying elevation. A cross-section through the 3D model at a

mid-range discretization is seen in Figure B.12. The layer above the interface has a

conductivity of 1 Sm−1 and the layer below the interface has a conductivity of 100

Sm−1. We produced data from the forward operator, with the true model discretized,

using 45×45×45 cells. We created a series of models that ranged from 5×5×5 to

40×40×40, over the same domain. At each discretization level, the true model was

down-sampled onto a regular mesh as well as a curvilinear mesh that was aligned to

the interface. The survey setup was a grid of 4×4 equally spaced electrodes centered

on the top surface of the model. There were a total of 16 electrodes, 120 source config-

urations, and 91 active measurements per source dipole. This gave rise to 10,920 total

measurements, half of which are symmetric and likely would not have been collected

in a field experiment, but were collected in this numerical experiment. We compare the

data collected from each of the test models directly to the large model’s data and plot
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the norm in Figure B.13. The mesh that is aligned to the layer performs significantly

better at lower discretizations because it is more accurate at resolving the topographic

interface. For example, at a norm data error of 100, the mesh aligned to the layer

needed 163 cells, versus 273 when we used a rectangular discretization - or nearly five

times the number of cells. The changes in error at coarse discretizations is due to the

low accuracy in modeling the location of the sources and receivers.

The logically rectangular mesh allows increased degrees of freedom when plac-

ing the nodes of the mesh. In simple situations it is possible to significantly improve

accuracy of the numerical model at reduced computational costs. However, the in-

creased freedoms in picking node locations forces additional thought in mesh creation

and alignment. Issues of mesh creation can be complex and these problems must be

handled appropriately. It is suggested that simple meshes (i.e. regular) be used when

possible and to only use the logically rectangular mesh when known layers, such as

topography, are well-defined and known to significantly influence the solution of the

problem and data collected.

B.7 Conclusions

Discretization techniques are necessary in every aspect of computational geophysics

and have been used extensively throughout my thesis and collaborative work. Many

of the components in the discretization require special attention when considering

the inverse problem; most notably, derivatives to the inner products and choosing

when to cache operators. In this chapter, I have provided a description of the finite

volume techniques that are necessary to discretize and simulate many of the elliptic

and parabolic partial differential equations that are common in electromagnetic geo-

physics and hydrogeologic fluid flow. I have provided the derivations in a general
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form, such that they apply to four different types of meshes in common use in geo-

physical inverse problems. This generality allows for differences between the mesh

types to be highlighted and discussed. I have also provided an open source, per-

missively licensed implementation of this work. The Python implementation, called

discretize (http://discretize.simpeg.xyz), is object-oriented and highlights the con-

cepts and inheritance structure of the meshes under consideration. The numerical ex-

ample highlights these meshes in use for a direct current resistivity problem and briefly

discusses some of the numerical advantages and disadvantages of each mesh type.

B.7.1 Continuing work

A number of improvements and extensions that have yet to be tackled at the time of

writing. Among these are (in no particular order): (a) improved ease of use around

boundary conditions; (b) more utilities for mesh creation especially for more compli-

cated meshes (i.e. curvilinear and tree); (c) an increase in the combinatorial nature of

existing meshes, for example, cylindrical or curvilinear octrees; (d) extension to un-

structured meshes, voronoi meshes, and other coordinate systems (e.g. spherical); (e)

a more rigorous comparison to finite element codes (cf. Jahandari et al. (2017)); and

(f) integration to existing mesh generation packages. By providing this package in an

open, standalone, tested, documented form we hope that the implementation can be

improved by the growing community of contributors.
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discretize.BaseMesh.BaseMesh
dim
nC
nE
nEx
nEy
nEz
nF
nFx
nFy
nFz
nN
normals
tangents
vnE
vnF
x0
projectEdgeVector()
projectFaceVector()

discretize.BaseMesh.BaseRectangularMesh
nC
nCx
nCy
nCz
nEx
nEy
nEz
nFx
nFy
nFz
nN
nNx
nNy
nNz
vnC
vnEx
vnEy
vnEz
vnFx
vnFy
vnFz
vnN
r()

discretize.CurvilinearMesh.CurvilinearMesh
area
edge
gridCC
gridEx
gridEy
gridEz
gridFx
gridFy
gridFz
gridN
normals
tangents
vol

 

discretize.DiffOperators.DiffOperators
aveCC2F
aveE2CC
aveE2CCV
aveEx2CC
aveEy2CC
aveEz2CC
aveF2CC
aveF2CCV
aveFx2CC
aveFy2CC
aveFz2CC
aveN2CC
aveN2E
aveN2F
cellGrad
cellGradBC
cellGradx
cellGrady
cellGradz
edgeCurl
faceDiv
faceDivx
faceDivy
faceDivz
nodalGrad
nodalLaplacian
getBCProjWF()
getBCProjWF_simple()
setCellGradBC()

discretize.InnerProducts.InnerProducts

getEdgeInnerProduct()
getEdgeInnerProductDeriv()
getFaceInnerProduct()
getFaceInnerProductDeriv()

discretize.CylMesh.CylMesh
area
aveE2CC
aveE2CCV
aveF2CC
aveF2CCV
cartesianOrigin : recarray
cellGrad
edge
edgeCurl
faceDiv
faceDivx
faceDivy
faceDivz
isSymmetric
nEz
nNx
nNy
nodalGrad
nodalLaplacian
vectorCCx
vectorCCy
vectorNx
vectorNy
vnEy
vnEz
vnFx
vol
getInterpolationMat()
getInterpolationMatCartMesh()

discretize.TensorMesh.BaseTensorMesh
gridCC
gridEx
gridEy
gridEz
gridFx
gridFy
gridFz
gridN
h
hx
hy
hz
vectorCCx
vectorCCy
vectorCCz
vectorNx
vectorNy
vectorNz
getInterpolationMat()
getTensor()
isInside()

discretize.MeshIO.TensorMeshIO

readModelUBC()
readUBC()
readVTK()
writeModelUBC()
writeUBC()
writeVTK()

discretize.MeshIO.TreeMeshIO

readModelUBC()
readUBC()
writeUBC()
writeVTK()

discretize.TensorMesh.TensorMesh
area
cellBoundaryInd
edge
faceBoundaryInd
vol

 

discretize.TreeMesh.TreeMesh
area
aveE2CC
aveE2CCV
aveEx2CC
aveEy2CC
aveEz2CC
aveF2CC
aveF2CCV
aveFx2CC
aveFy2CC
aveFz2CC
aveN2CC
edge
edgeCurl
faceDiv
fill
gridCC
gridEx
gridEy
gridEz
gridFx
gridFy
gridFz
gridN
levels
maxLevel
nC
nE
nEx
nEy
nEz
nF
nFx
nFy
nFz
nN
nhE
nhEx
nhEy
nhEz
nhF
nhFx
nhFy
nhFz
nhN
nodalGrad
ntE
ntEx
ntEy
ntEz
ntF
ntFx
ntFy
ntFz
ntN
permuteCC
permuteE
permuteF
vntE
vntF
vol
balance()
corsen()
getInterpolationMat()
number()
plotGrid()
plotImage()
plotSlice()
point2index()
refine()

Figure B.11: The computational ontology developed for the discretize
package showing inheritance and commonalities between the four mesh
types.
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Figure B.12: Regular mesh and mesh aligned to layer for a simple conductivity
model at 14×14×14.
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Figure B.13: Comparison of norm data error for the regular mesh and the mesh
aligned to the interface.
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Appendix C

Interfaces and extensions

C.1 Introduction

Incorporating and quantitatively capturing a-priori and hydrologic and geologic in-

formation is a perennial problem in geophysics. Many methods already exist to in-

clude geologic information in geophysical simulations and inversions. Broadly, these

methods include ways of formulating: (a) the inverse problem: through regularization,

objective functions, or constraints (cf. Williams (2008)) and (b) the forward simula-

tion: through parameterization of physical properties, model conceptualization, and

the dimensionality or physical equations used in the simulation (e.g. Oldenburg and

Li (2005); Li and Oldenburg (1998, 1996); Pidlisecky et al. (2007); Li et al. (2010);

Pidlisecky et al. (2011); McMillan et al. (2015); Kang et al. (2015a)). Section 2.2.2

gives the inversion elements, inverse problem formulation, and a brief discussion of

choices in the regularization. Furthermore, the inverse formulation and the addition of

regularization can largely be done in an external way. The intricacies inherent in the

forward simulation, however, were largely neglected in the general discussion of the
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framework. In this appendix, we will explore a number of case studies that are driven

by the context of the inverse problem. The case studies span vadose zone flow, direct

current resistivity, time and frequency domain electromagnetics, and simple structural

geologic modelling.

C.1.1 What is your model?

In all of these case studies, we focus on the question ‘What is your model?’; that is,

how does the framework approach enable custom model conceptualizations? The stan-

dard approach in exploration geophysics of a 3D distribution of voxels is both general

and widely applicable. However, this approach falls short when integrating with fields

of hydrology or geology. For example, Pidlisecky et al. (2011) uses a hydrologic con-

ceptualization for a geophysical model and inverts directly for the spatial morphology

of a solute plume through a moment-based description. McMillan et al. (2015) takes a

similar approach to invert time domain electromagnetic data for a thin geologic unit of

variable dip. In direct coupling of geophysical and hydrologic inverse problems, the

parameterization of the model must be flexible and extensible by researchers who are

asking new scientific questions.

The focus on the forward simulation is to expand on the capabilities of the frame-

work developed in Chapter 2. The forward simulation framework must have the flexi-

bility to support and interface to arbitrary parameterizations. A general architecture

requires that derivatives be calculated with respect to: (a) multiple physical prop-

erties in the physical equations (e.g. electrical conductivity, hydraulic conductivity,

and magnetic permeability); (b) the sources (e.g. waveform, transmitter location, and

boundary conditions); (c) estimation of additional fields/fluxes from the solution of

the PDE (e.g. saturation field from pressure head); and, (d) from the measurements
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(e.g. location and orientation of data collection). In order to support the custom pa-

rameterizations that are necessary for a unique decision or prediction, this architecture

must provide building blocks that are independently extensible. The PEST framework

for model independent parameter estimation and uncertainty analysis provides a con-

crete example of where this has previously been done with success (Doherty, 2004).

The software is widely cited in academia (> 2K citations) especially in hydrology

and hydrogeophysics, and is heavily used in industry. The advantage of being model-

independent has given this technique wide application due to the flexibility to adapt to

new scientific questions. However, this flexibility also comes at quite a cost because

the structure of the simulation and modelling cannot be used to the advantage of the

algorithm. As with the Richards equation or electromagnetics, when moving to three

dimensions there may be hundreds of thousands to millions of parameters to estimate.

Not taking the structure of the problem into account severely limits the types and sizes

of problems that can be considered. In the following sections, we will briefly describe

some of the necessary components to simultaneously support a breadth of custom pa-

rameterizations. These abstractions have been possible through collaborative work

across multiple fields, including electromagnetics, fluid flow, and parameterized geo-

logic modeling.

C.2 Forward simulation framework

The aim of the forward simulation is to compute predicted data, dpred, provided an in-

version model, m, and sources, which may come in the form of boundary conditions,

are used. Here, we use the term, inversion model, to describe a parameterized repre-

sentation of the earth (voxel-based or some other parametric representation; that is, the

model is an array of numbers). Even if the model is solely used for forward modelling,
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its form sets the context for the inverse problem and the parameter-space that is to be

explored. Additionally, it is often an advantage to explore the sensitivity of predicted

data or fields with respect to physical properties, sources, or receivers (for example, in

survey design or uncertainty estimation). The forward simulation framework was lead

primarily from the conceptual pieces necessary from the Richards equation (Chapter 3)

as well as time and frequency domain electromagnetics, which are presented in Heagy

et al. (2016). Figure C.1 shows the framework for the forward simulation as distilled

from this collaborative work, which extends the general framework presented in Chap-

ter 2 and, similarly, consists of two overarching categories (Cockett et al., 2015c):

• the Problem, which is the implementation of the governing equations,

• the Survey, which provides the source(s) to excite the system as well as the

receivers to sample the fields and produce predicted data at receiver locations.

C.2.1 Concepts

Here, we provide a brief overview of each of the components in the forward sim-

ulation. An in-depth discussion about each component in this framework has been

published in the context of electromagnetic problems (Heagy et al., 2016). Here,

we present a succinct adaptation of this work in the context of the Richards equation

by walking through Figure C.1. To compute pressure head responses everywhere in

space and time, the forward simulation requires the definition of two physical property

functions, which describe the water retention curve (θ(ψ)) and hydraulic conductivity

function (K(ψ)) on the simulation mesh. This method differs from many geophysical

methods where physical properties are not dependent on the fields/fluxes (for exam-

ple, electrical conductivity in direct current resistivity). Analogies exist here between
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Figure C.1: The forward simulation framework that is used for Richards equa-
tion.

induced polarization geophysical methods and the Richards equation, where the mea-

sured electrical conductivity depends upon the frequency of the alternating current.

Regardless of the physics used, physical properties (or functions) must be defined

throughout the computational domain. The physics defines the equation, in this case

the Richards equation, which can be written as a matrix equation:

A(m)u = q(s)

where u is the solution of the matrix solve (possibly a field) and q(s) is both the right-

hand side and the function of a source. In the time domain case, when backward Euler
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is used, A amounts to a block bidiagonal matrix. The boundary conditions can be

seen as sources, s, when the discretization is written in weak-form (Section B.2.5).

The sources must be included in both the physics and, in the case of electromagnetics,

the fields. In the case of the Richards equations, the evaluation of the pressure head

field to the water content field is dependent on the water retention curve, which may,

in turn, depend on the model. These fields, defined everywhere in the computational

domain, can be spatially and temporally interpolated onto the measurement locations

of the receivers to create predicted data. In other geophysical methodologies, the data

may be produced through a spatial or temporal derivative (e.g. gravity gradiometry), a

potential difference (e.g. direct current resistivity), or a ratio involving multiple geo-

physical fields (e.g. magnetotellurics). Figure C.1 shows the conceptual steps involved

in going from a model vector to predicted data. Heagy et al. (2016) discusses some ad-

ditional intricacies; however, this conceptual organization into modular, exchangeable,

and testable components is helpful when tackling the implicit derivatives necessary in

the inverse problem.

C.2.2 Derivatives

The process we follow to compute matrix-vector products with the sensitivity is shown

in Figure C.2, where Jv is built in stages by taking matrix vector products with the rele-

vant derivatives in each component. This process is shown schematically in Figure C.2

for both Jv and J>v. As an example, let us consider our model to be the van Genuchten

parameter, α , which is defined as a heterogeneous parameter inside the computational

domain. In this case, m = α and no other parameters are considered to be active. The
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sensitivity of the forward simulation to the model takes the form:

J[m] =
dF [m]

dm
=

dP(f)
df

df
dα

dα

dm

=
dP(f)

df︸ ︷︷ ︸
Receivers

(
∂ f
∂u

Physics︷︸︸︷
du
dα

+
∂ f
∂ s

Sources︷︸︸︷
ds
dα

+
∂ f
∂α

)
︸ ︷︷ ︸

Fields

dα

dm︸︷︷︸
Properties

(C.1)

The annotations in Figure C.2 denote which of the elements shown are responsible

for computing the respective contribution to the sensitivity. If the model provided is

instead in terms of Ks, this property replaces the role of α . The flexibility to invoke

distinct properties of interest (e.g. α , Ks, source location, etc.) in the inversion re-

quires quite a bit of ‘wiring’ to keep track of which model parameters are associated

with which properties (physical properties, location properties, boundary conditions,

etc.); this ‘wiring’ is achieved through a general Wires class that keeps track of the

connections between properties and the model (Program C.2).

Although typically the source terms do not have model dependence and thus their

derivatives are zero, the derivatives of s must be considered in a general implementa-

tion (Heagy et al., 2016). For example, if one wishes to use a nested approach, where

source fields or boundary conditions are constructed by solving a simplified or dif-

ferent physics problem, the source terms may have dependance on the model. The

source terms’ dependance on the model means that their derivatives have a non-zero

contribution to the sensitivity (cf. Haber (2015); Heagy et al. (2015c, 2016)).

The derivative of the solution, vector u with respect to the model, is found by
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implicitly taking the derivative of the physics with respect to m, giving:

du
dm

= A−1(m)

(
− ∂A(m)ufix

∂m︸ ︷︷ ︸
getADeriv

+
∂q
∂ s

ds
dm

+
∂q
∂m︸ ︷︷ ︸

getRHSDeriv

)
(C.2)

The annotations below the equation indicate the methods of the Problem class that

are responsible for calculating the respective derivatives. If multiple physical prop-

erties are internal to the A, then this is indicated by an underscore in the method

name (getADeriv sigma). Typically the model dependence of the system ma-

trix is through the physical properties. (for example, σ , µ in electromagnetics or Ks,

α , and other van Genuchten parameters in the Richards equation). Thus, to compute

derivatives with respect to m, we first take the derivatives with respect to α and we

treat the dependence of α on m using chain rule.

Figure C.2: The components required in calculating the derivatives of the for-
ward simulation, showing (a) the modular nature of each derivative; (b)
the process of multiplying each derivative in the forward sense with Jv;
and (c) in the adjoint sense with J>v.
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C.2.3 Properties and Mappings

Often, in solving an inverse problem, the model which we choose to invert for (the vec-

tor m) is some discrete representation of the earth that is decoupled from the physical

property model or perhaps represents multiple physical properties. This decoupling

requires the definition of a Mapping that is capable of translating m to physical prop-

erties on the simulation mesh. For instance, if the inversion model is chosen to be

log-conductivity, an exponential mapping is required to obtain electrical conductivity

(i.e. σ = M (m)). To support this abstraction and integration to model conceptu-

alization, the framework defines a number of extensible Mapping classes (Cockett

et al., 2015c; Kang et al., 2015a; Heagy et al., 2016). These Mappings must also

be able to deal with the potential for multiple physical properties, potentially in dif-

ferent locations, in the forward simulation framework. For example, in the Richards

equation, the water retention function is required in both the physics and the fields

to translate pressure head to water content or saturation. As we are in the process

of developing a computational ontology that is extensible and applicable across dis-

ciplines, our framework is explicit about where the physical properties (or functions

and their properties) are involved in the forward simulation framework. For example,

in Program C.1, we can define a base class that represents the hydraulic conductivity

function. Many variants (subclasses) of this function exist, which define parameters

in different ways, including van Genuchten, Brooks-Corey, splines, interpolation, etc.

The properties on these subclasses are the parameters that one might be interested in

inverting for (in van Genuchten, these would include Ks, α , n, and I). The Problem

class, which contains the physics, can declaratively define that it requires a valid in-

stance of a hydraulic conductivity function. This inheritance is similar for the water
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retention, which can be defined on both the problem and the fields. The declarative

nature of these properties is the backbone of extracting an ontology, which can

be used in a variety of other ways (specification, search, documentation, collaboration,

etc.). In defining the properties, we also define a map, M (m), to that property as well

as a derivative with respect to the model.

import properties
from SimPEG import Props, Problem

class HydraulicConductivity(Props.HasModel):
"""The base hydraulic conductivity function"""

class Vangenuchten_k(HydraulicConductivity):

Ks, KsMap, KsDeriv = Props.Invertible(
"Saturated hydraulic conductivity",
default=1e3

)

alpha, alphaMap, alphaDeriv = Props.Invertible(
"inverse of the air entry suction [L-1]",
default=6.0, min=0

)

class BrooksCorey_k(HydraulicConductivity):
"""Or a spline, or something custom"""

class RichardsProblem(Problem.BaseTimeProblem):

hydraulic_conductivity = properties.Instance(
’hydraulic conductivity function’,
HydraulicConductivity

)

Program C.1: Definition of a hydraulic conductivity model with multiple invert-
ible properties that is declaratively attached to the Richards problem
class.

The mappings from the model space to a physical property on the computational

domain are a key way to interface to domain knowledge in other disciplines (e.g. struc-

tural geology). Additionally, they allow the inversion methodology to turn on or off

sensitivity to the model at a property by property basis; this is completed by a Wires
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utility, which creates projection matrices that sample the model vector at the appro-

priate location(s). Program C.2 demonstrates this utility in Python code and shows

the outcome of assumptions using assert statements. In this case, we define the model

vectors to be Ks and α and use the wires to attach these vectors to the physical prop-

erties. In the inversion, however, we may wish to invert in log conductivity space for

Ks, as this property varies logarithmically rather than linearly. To do this, we use an

additional Mapping to take the exponential of the model before setting the parameter

in the hydraulic conductivity function. The length of these transformations is arbitrary

and extremely specific to the case study or geoscience hypothesis (e.g. survey design,

parametric inversions, or sensitivity analysis). The mappings between model concep-

tualization and physical properties can be broken into composable, reusable pieces,

which can use the chain rule to evaluate the derivative of the transformation. Fig-

ure C.3 shows this evaluation in action, where a logarithmically scaled conductivity in

a layered earth is transformed into the physical property on the entire computational

domain.

Figure C.3: Mapping an inversion model, a 1D layered, log conductivity model
defined below the surface, to electrical conductivity defined in the full sim-
ulation domain.

192



import numpy as np
from SimPEG import Mesh, Maps
from SimPEG.FLOW.Richards import Empirical

mesh = Mesh.TensorMesh([[(1, 40)]], ’N’) # Create mesh with 40 cells
k_fun, theta_fun = Empirical.van_genuchten(mesh) # Create empirical models

k_sat = 1e-3 # Define homogeneous physical properties
alpha = 6.0

k_sat_model = [np.log(k_sat)]*mesh.nC # Put values into array, log(Ks) is the model
alpha_model = [alpha]*mesh.nC
model = np.array(k_sat_model + alpha_model)

assert len(model) == mesh.nC * 2 # We have 80 model parameters

theta_r = np.array([0.02]*mesh.nC) # Define other properties (not in model)
theta_s = np.array([0.30]*mesh.nC)

wires = Maps.Wires( # Create wires from model to properties
(’Ks’, mesh.nC), # Ks gets 40 parameters
(’alpha’, mesh.nC) # α gets 40 parameters

)

# Use the maps to define Ks and alpha
k_fun.KsMap = Maps.ExpMap(mesh) * wires.Ks # Add the exponential mapping
k_fun.alphaMap = theta_fun.alphaMap = wires.alpha # Note that alpha is in both functions

theta_fun.theta_r = theta_r # Use the properties to define θr & θs
theta_fun.theta_s = theta_s

k_fun.model = theta_fun.model = model # Set the model for each function

# Test the setup of the functions
assert np.isclose(k_fun.alpha[0], alpha) # Check that the mappings are working
assert np.isclose(theta_fun.alpha[0], alpha)
assert np.isclose(k_fun.Ks[0], k_sat) # Including the exponential
assert k_fun.KsDeriv.shape == (40, 80) # Check the Ks derivative is the correct shape
assert theta_fun.theta_rMap is None # Check that there are no Maps for θr
assert theta_fun.theta_sMap is None # Nor for θs
assert theta_fun.theta_rDeriv == 0 # Which means the derivative, ∂θr

∂m , is zero

print(k_fun.summary()) # Print a summary of the function

# >> Physical Properties:
# >> [*] I: set by default value
# >> [*] Ks: set by the ‘KsMap‘: ComboMap[ExpMap(40,40) * Projection(40,80)] * model(80)
# >> [*] alpha: set by the ‘alphaMap‘: Projection(40,80) * model(80)
# >> [*] n: set by default value

Program C.2: Demonstration of the ability to choose arbitrary parameters to in-
clude in a model, and use the chain rule to compose parameterizations.
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C.3 Parameterizations

In the following case studies, I will touch briefly on some key questions and how the

framework developed can answer these classes of questions. Many of the case studies

have been published and represent collaborative work with many colleagues. In this

section, rather than repeating the conclusion of each study, I will highlight what I have

learned and how the framework developed can be used.

Some geoscience questions:

• What is the distribution of physical properties?

– What space?

– What about known distributions?

• What is the sensitivity to a conceptual model?

– For example, in survey design?

– How does this extend to structural geologic modelling?

• What is the dimensionality (1D, 2D, 3D, or 4D) of the problem?

– For example, in electromagnetics?

– How do we keep control variables when testing assumptions?

• How can we integrate, nest, couple, and join different problems?

– For example, in a primary secondary formulation?

– In the general case?
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C.3.1 Expected distributions

Electrical or hydraulic conductivity are often parameterized logarithmically. This loga-

rithmic parameterization changes the space in which the inversion ‘searches’ for an an-

swer to the optimization problem. In the Richards equation, for example, by choosing

the parameterization of van Genuchten, we constrain the inversion to pulling only from

a set of parameterizations of this function. In Heagy et al. (2014), we investigated two

approaches for identifying the extent and location of an electrically conductive prop-

pant. Hydraulic fracturing uses sand or ceramic beads to prop newly created fractures

open; as such, the location of the proppant represents the volume of a reservoir that

can be effectively drained. The standard approach involves using an uncoupled geo-

physical inversion to create an image of electrical conductivity and then, subsequently,

interpret that distribution either qualitatively or quantitatively (Figure C.4). In Heagy

et al. (2013), the authors investigated the geophysical responses of conductive and per-

meable proppant particles. Later research by Heagy lead to a parameterization using

effective medium theory to analytically describe the relationship between conductivity

and volume fraction of the proppant. In Heagy et al. (2014), we used this relation di-

rectly in a coupled geophysical inversion for the volume of the proppant. Furthermore,

by parameterizing the inversion in terms of volume, rather than conductivity, we can

use the known volume of the proppant pumped into the synthetic reservoir as another

datum. This coupled methodology was tested on a synthetic example and the joint

inversion of geophysical and volume data showed promising results.

This coupled geophysical method can be completed through a single, custom made

Mapping that codifies the effective medium theory parameterization and the deriva-

tive. We can then attach this mapping to a physical property, such as electrical con-
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ductivity. By changing the space in which we choose to conceptualize the model, it is

possible to add more a priori information and other datum.

Figure C.4: (a) Traditional approach to inversion, where the model space, elec-
trical conductivity, is mapped to data space, the electromagnetic response,
through a forward model. The inversion then provides a method by which
we estimate a model that is consistent with the observed data. The re-
covered conductivity model is then used to infer information about the
reservoir properties of interest, in this case, the distribution of proppant.
(b) Parametrized inversion, where we parametrize the model space, elec-
trical conductivity, in terms of the property of interest, the distribution of
proppant. By defining such a parametrization, the inversion can provide a
means of estimating the properties of interest directly from the data.

C.3.2 Survey design

Heagy et al. (2016) presented the forward simulation framework for the context of

electromagnetic simulations and inversions. One of the examples in this paper dealt

with a steel-cased well, which was used to deliver a galvanic or inductive source to

a target reservoir (Figure C.5). Here, we posed the question: How sensitive are the

data to the location, depth, and conductivity of a target in a reservoir? To answer this

question, we conceptualized a simple model of location, dimensions, and conductiv-

ities of an idealized block in a reservoir layer; all model parameters are visualized in

Figure C.5. The challenge here is that the steel-cased well has a thickness on the order

of millimeters, while being kilometers long. Tackling this challenge in a computa-
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tionally efficient manner required a primary-secondary approach, where source fields

were constructed by solving a simplified problem without the target on a cylindrically

symmetric mesh. However, this approach required that the contribution of the model

sensitivity had to be efficiently traced all the way back through the primary fields.

Figure C.5 shows the nesting of two forward modelling frameworks. By looking at

the sensitivity to these model parameters, the paper drew conclusions about potential

survey designs and to what extent the conceptual model could be resolved by noisy

data.

Figure C.5: Setup of a parametric models for a steel cased well and a reservoir
target. The calculation of sensitivity for using a primary secondary ap-
proach is shown using the forward simulation framework.

This example required multiple formulations of Maxwell’s equations on two dif-

ferent mesh types. The model could be conceptualized and potentially mapped to

both electrical conductivity and magnetic permeability. The mappings required for

this model conceptualization are largely reusable for other contexts. The sensitivity to

the model parameters required that two problems be nested, which showed the value

of composable pieces in a geophysical inversion framework.
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C.3.3 Geologic modeling

While completing my studies, I was involved in creating a number of structural geo-

logic modelling tools (Cockett et al., 2014a; Cockett, 2012, 2015; Funning and Cock-

ett, 2012; Cockett et al., 2016b; Cockett, 2013). Over 300,000 people around the world

have used these tools, primarily in introductory geoscience education (Cockett et al.,

2016b). These tools allow rapid conceptual modelling of geologic scenarios (Fig-

ure C.6). Again, this process can be thought of as a mapping that codifies geologic

knowledge and provides physical properties as a function of space. Using these map-

pings directly in an inversion, however, is difficult as the parameterization is spatially

coupled; that is, a single parameter, such as rotation of a tilting event or period of

a folding event, can change almost all physical properties at once. This spatial cou-

pling is in contrast to a spatially decoupled voxel-based parameterization, where each

cell centered parameter has no effect on its neighbours. Due to the spatial coupling,

the explicit geologic parameterizations developed in (Cockett et al., 2016b) creates a

non-convex objective function, which is difficult to minimize with deterministic opti-

mization. Implicit geologic modelling, in contrast, solves an inverse problem by us-

ing radial basis functions to create a spatially extensive geologic parameterization (cf.

Hillier et al. (2014)). Including this implicit modelling into the geophysics inversion

framework as a mapping could be promising way to include geologic information.

C.3.4 Dimensionality and controlled variables

In Kang et al. (2015a), we explored the advantages to increasing the dimensionality

of the physical problem being solved (in this case, ground loop, time domain electro-

magnetics). We explored these advantages over a three-dimensional synthetic model

of seawater intrusion into a confined aquifer (Figure C.7). The experiment allowed
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Figure C.6: Parameterized geologic models using a series of analytic functions.
Models were created using Visible Geology (http://app.visiblegeology.
com).

for comparisons between the various dimensions because the tools were written in a

consistent framework where only a single variable was changing at a time. The in-

creased dimensionality, in this case, led to a better recovery of the seawater intrusion

interface. (Kang et al., 2014) subsequently fit the saltwater intrusion by a parametric

surface. In Pidlisecky et al. (2013), however, we used a decrease in dimensionality

(from 2.5D to 1D), which was tested for the ability to similarly fit collected data. In

Heagy et al. (2016), data inversions were explored in both time domain and frequency

domain electromagnetics. Figure C.8 shows the similarities between the two forward

simulation frameworks. Although the internals of the implementation differ slightly,

the inversion framework that we used is identical.

The flexibility to explore the dimensionality of the problem under consideration is

important; this can be enabled by a consistent set of tools that allow you to control all

variables except the dimensionality of the computational domain. When comparing

between formulations of the same physics, the forward problems can inherit from and

utilize many of the same components and the inversion machinery is identical. Rather
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Figure C.7: Conceptual diagram of moving between 1D, 2D, and 3D models.

than comparing inversion results to a completely different black-box implementation,

these shared components of the framework promotes controlled variables and more

rigorous comparisons of inversion methodologies across physical problems.

C.3.5 Nesting

There are many future research opportunities for combining, coupling, nesting, or oth-

erwise integrating different physical problems. An example of these opportunities

was completed in Heagy et al. (2016), where we nested a physics problem inside an-

other one (Figure C.5). In this case, we nested the same physics problem; however,

in Rosenkjaer et al. (2016), the authors used the framework to combine electromag-

netic dipole sources with the magnetotelluric forward modelling to investigate coherent

source interference. The growing field of hydrogeophysics will continue to combine

geophysics and fluid flow problems; the use of a consistent and integrated framework

should help to further these goals.
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Figure C.8: Diagram showing the entire setup and organization of (a) the fre-
quency domain simulation; (b) the time domain simulation; and (c) the
common inversion framework used for each example. The muted text
shows the programmatic inputs to each class instance.

C.4 Conclusions

Geologic and a priori assumptions are often given through parameterizations. The

parameterizations necessary for a specific case study will often need to be unique to

answer or predict a specific geoscience hypothesis. Through the exploration of nu-

merous case studies across the geophysical, hydrologic, and geologic literature, we

presented a forward modelling framework in Heagy et al. (2016). The important as-

pects of this framework are: (a) rigorously defining the properties that can be inverted

for; (b) allowing these properties to be defined directly or wiring the property to the

model through a mapping; and, (c) providing a number of extensible and reusable

mapping components, which, when chained together, allow for efficient calculation of

the sensitivity. The forward modelling framework presented maintains the computa-

tional scalability that is necessary to invert for large-scale 3D distributions of param-
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eters (such as in electromagnetics or vadose zone flow). It is important to note that

this framework also allows for customization through extensible mappings to custom

model conceptualizations. By defining these components in a common framework,

we enable hypothesis testing and exploration of assumptions by changing single vari-

ables (e.g. formulation or dimensionality) while keeping other variables controlled.

The nesting and coupling of forward simulations, combined with these mappings be-

tween model conceptualizations, is important to any framework that aims to enhance

quantitative geoscience collaboration.
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